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Abstract: We propose and design an energy-efficient integrated photonic computing core by 

using a microdisk resonator-assisted Mach-Zehnder interferometer. With the use of the fabricated 

silicon photonic chip, an optical convolutional neural network for image classification is 

experimentally demonstrated. © 2022 The Author(s) 

 

1.  Introduction 

Artificial neural networks (ANNs) have achieved great success in a wide range of cognitive tasks, such as speech 

recognition and image processing. Limited by the transistor size and the "memory wall" caused by the von Neumann 

architecture, it is difficult for conventional electronic computing hardware to meet the increased computational 

demands of the ANNs [1]. In recent years, optical neural networks (ONNs) have been demonstrated to be an 

emerging neuromorphic platform with ultra-low latency, high bandwidth, and high energy efficiency [2], since 

computationally-intensive operations in neural networks, e.g., matrix multiplication, can be efficiently realized by 

optics at the speed of light. In 2017, Shen et al. demonstrated an integrated ONN to realize vowel recognition based 

on a programmable integrated Mach-Zehnder interferometer (MZI) array [3]. This approach is capable of 

implementing reconfigurable and multi-layer ONN via complex-valued matrix computation [4]. However, the key 

problem of the thermo-optic MZI modulator is its high power consumption.  

To reduce the power consumption, in this paper, we propose and demonstrate a WDM-compatible integrated 

photonic computing core that is capable to perform parallel vector-matrix multiplication with a high energy 

efficiency. Thanks to the microdisk resonator (MDR) assisted MZI configuration, by tuning the resonant wavelength 

of each MDR independently, the computing core can support multi-wavelength operation, enabling parallel matrix 

computation with a low power consumption. An experiment is performed in which an optical convolutional neural 

network (CNN) for image classification is realized with the use of the fabricated silicon photonic chip.  

2.  Principle 

Figure 1(a) shows the schematic of the proposed WDM-compatible integrated photonic computing core. The key 

component of this computing core is an MDR-assisted MZI structure. Each arm of the MZI is composed of three 

MDRs with an identical radius of 6.4 μm, the gap between the MDR and bus waveguide is designed as 200 nm to 

ensure that it works in over-coupling condition. The resonant wavelengths of MDRs are independently tuned by the 

corresponding thermo-optic electrodes, and so are their phase response. Thus, each MDR can be considered as a 

tunable phase shifter. With the MZI interferometer, by tuning the resonant wavelengths, at the output different 

splitting ratios can be achieved at different wavelengths. The input data could be represented by different vectors 

with 2 components that are encoded in the optical power of different wavelengths via spectral shaping by a 

waveshaper. And different 2×2 weight matrices could be also implemented by tuning the MDRs. Thus, the input 

vector and parallel matrix-vector multiplication between a matrix 2×2 and a vector 2×1 could be realized at different 

wavelengths. The inset of Fig. 1(a) shows the measured optical image of the fabricated silicon photonic computing 

core. As can be seen, four vertical grating couplers spaced at 127 μm are used for input and output fiber-chip 

coupling. The thermo-optic microdisk modulators on each arm of the device are separated by insulating trenches. 

The transmission spectrum of the WDM-compatible integrated photonic computing core is shown in Fig. 1(b). 

The FSR of the MDR is about 16 nm, and the average extinction ratio exceeds 16 dB by precisely tuning the 

resonant wavelengths of the three sets of MDRs. By further tuning, the wavelengths of the three sets of MRRs can 

be arbitrarily adjusted, thus giving the WDM-compatible photonic computing core the ability to compute in parallel. 
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Fig. 1. (a) Schematic of the proposed WDM-compatible photonic computing core. The inset shows the optical 

image of the fabricated chip. (b) The measured transmission spectrum of the photonic computing core. 

3.  Experimental results 

 

Fig. 2. Convolutional image processing using the fabricated photonic computing core. (a) Part of the 

measured temporal waveform for convolutional image processing. (b) The theoretically calculated edge-

detected images and the experimentally measured edge-detected images. 

In the experiment, we build a photoelectric system to conduct convolutional image processing with the proposed 

photonic computing core, as shown in Fig. 1(a). As a proof-of-concept demonstration, we perform the convolution 

process of a 64×64 8-bit image of a flower picture to detect its edge feature. The flower image in the inset of Fig. 

1(a) is used as the input grayscale image. Two 2×2 kernels 
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 are used in the experiment for 

horizontal and vertical edge detection, respectively. According to the order in which the convolution kernel moves 

in the convolution calculation, the grayscale image is divided into a series of 2×2 data groups. Each data group 

contains 4 pixels. Then, the data group and kernel weight are flattened into vectors X, Y respectively. After the 

flattening operation, vector X is loaded into the WaveShaper by setting different amplitude attenuation on different 

wavelengths, and vector Y is loaded into the photonic computing core by adjusting the resonant wavelengths of the 
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three sets of MDRs. When the input optical sequences of four different wavelengths propagate through the chip, the 

vector X represents the image information, and the vector Y represents the kernel weights are multiplied. The 

multiplication result for each data group is then accumulated through a balanced photodetector (BPD) with a 

bandwidth of 150 MHz. The processed image can be recovered by sampling and rearranging the output temporal 

signal from the BPD. As can be seen in Fig. 2(b), the experimentally measured edge-detected image agrees very 

well with the theoretically calculated one, and the mean square error (MSE) are 0.004 (horizontal) and 0.008 

(vertical), respectively. This result confirms the effectiveness of the use of the photonic computing core to perform 

convolutional image processing, which is a prerequisite for building an optical CNN. 

 

Fig 3. An optical CNN for image classification. (a) Schematic of optical CNN-based image classification. (b) 

The theoretically calculated feature maps and the experimentally measured feature maps from the 

convolutional layer. (c) Confusion matrix obtained from 100 repeated experiments. 

Here, we further construct an ONN for classifying handwritten digit images in the MNIST dataset based on the 

proposed photonic computing core. Figure. 3(a) gives the structure of the built CNN with a convolutional layer and 

a fully connected layer. Four 2×2 convolution kernels are used to extract the feature maps of the 14×14 handwritten 

digit image in the convolutional layer. By sampling the output temporal waveform of the photonic computing core 

and using the activation function (ReLu) to process the sampling result, four vectors each containing 169 elements 

are obtained. Then, arranging these elements into four 13×13 matrices, the feature maps of the input handwritten 

digit image are obtained. Figure. 3(b) displays the experimental results of the convolutional layer. It can be found 

that the experimentally reconstructed feature maps are consistent with that of a digital computer. This convolutional 

layer extracts features that contribute to image recognition. By finishing the following fully connected layer in an 

auxiliary computing device, the recognition result is obtained. We use the trained convolution kernel to process 100 

handwritten images to get their feature maps, and the corresponding classification result gives a classification 

accuracy of 95%. The diffusion matrix with 10 categories is shown in Fig. 3(c).  

In conclusion, we propose a WDM-compatible integrated photonic computing core, which is capable to process 

parallel matrix computation with a high energy efficiency. Based on the fabricated silicon photonic chip, an optical 

convolutional neural network is experimentally realized. The demonstrated structure holds great potential for 

improving the parallel computational capability and reducing the power consumption of conventional MZI structure.  
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