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Abstract: We train language models to automate the diagnosis of OTN configuration
errors, and the diagnostic accuracy is up to 97.56%. We additionally demonstrate the effec-
tiveness of the models on a real OTN system. © 2023 The Author(s)

1. Introduction

Software-defined optical transport network (OTN) enables centralized control of multivendor equipment. Due
to differences in control plane structures and automation levels, when configuring a lightpath, configuration er-
rors may occur by intra-node contradiction, mismatches between ports in management and physical connections,
control logic integrity defects, or unpredictable conditions during dynamic adjustment. Since commercial equip-
ment widely uses human-comprehensible XML to represent configuration status, the process of (an administra-
tor) retrieving status and discovering configuration logic errors (e.g., to read thousands of lines of configurations
from equipment nodes with different functions) is tantamount to the process of human understanding of natural
language. Manual retrieval is time-consuming, and the effectiveness of manual troubleshooting depends on the
multivendor knowledge and experience of administrators, which requires learning costs.

The concept of automating simple error diagnosis has been demonstrated previously, and language model-based
natural language processing (NLP) has recently achieved success in the task of understanding networking config-
urations [1–3]. In contrast, OTNs with emerging technologies have been widely demonstrated, diagnosis/locating
of fault caused by physical layer anomalies has been actively studied [4–6]. However, in practice, the probability
of configuration errors is much higher than that of physical layer failure. Considering these shortcomings, in this
work, we automate configuration error diagnosis by OTN domain-specific (attention-style deep neural network
based) language models (LMs). More specifically, we first use an (task-specific) LM to discriminate between cor-
rect and incorrect configurations, and then use another (task-specific) LM to find the device node where the error
occurred for the incorrect configuration, and based on this, administrators can further locate error details using
manual or automated logic. Moreover, we evaluate the performance of the LMs in error discrimination (97.89 in
F1 score) and error analysis (85.26 in Macro-F1 score), and the diagnosis accuracy is up to 97.56%. We addition-
ally verify the effectiveness of the proposed method through different cases on the experimental OTN system.

2. OTN Language Models

We first obtain an OTN domain-specific pre-trained LM, and fine tune this LM to task-specific LMs, to discrimi-
nate and detect configuration errors. The procedure is shown in Fig. 1. An original LM (i.e., we use Bidirectional
Encoder Representations from Transformers (BERT), more specifically bert-base-cased [7] in this work)
can understand natural languages for the reason that it is trained by random masking (i.e., cloze test) and next sen-
tence prediction tasks using domain-agnostic corpus (e.g., news). Step 1: To make the LM understand the OTN
glossary, we extend the vocabulary hold by the LM, especially, we insert important tokens such as edfa, roadm and
odu4 etc. Subsequently, we collect OTN corpus (from product manuals and Google search results with query of
OTN, transponder, wavelength selective switch (WSS), reconfigurable optical add-drop multiplexer (ROADM) and
optical switch etc.) to pre-train the original LM and get the OTN-LM. Step 2: We collect and build a configuration
error dataset, and the format is shown in Fig. 1 (b), where each item has configuration text (by conjugating con-
nections and configurations of a lightpath) and its class and label. If the configuration in an item is correct, it has
no further labeling. The error discrimination LM (EDiMo) is primarily trained as a binary classification task (i.e.,
to discriminate the configurations as correct or in error) using the dataset without considering the labels. Then, the
error analysis LM (ENaMo) is additionally trained as a multilabeling task (i.e., to locate specific equipment node
where the error(s) occur) considering the labels in the dataset. Step 3: We evaluate EDiMo and ENaMo by the
items in the dataset for testing.
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Fig. 1. (a) The procedure of configuration error diagnosis automation; (b) the format of dataset;
(c) performance evaluation of EDiMo; (d) visualized confusion matrix of ENaMo; (e) performance
evaluation of ENaMo.

We show the evaluation results through Fig. 1 (c) to (e), and conduct real-time validation in next section. The
dataset has 4096 entries. Correct and error configurations are equally divided. Thus, 4096 entries are used for
training EDiMo, and 2048 for ENaMo. For each model, the training data and testing data are 90% and 10% of the
dataset, respectively. We compare the performance of OTN-LM with that of OTN-LM without OTN vocabulary
(i.e., only using OTN corpus to pre-train original LM) and original LM. For the binary classification task, the accu-
racy and F1 scores are calculated in Fig. 1 (c). Although the performance of original LM is good, the downstream
task requires more accurate classification of the upstream task. OTN vocabulary and OTN corpus successfully
help the LM to understand OTN configurations. Visualized the confusion matrix is shown in Fig. 1 (d), with
darker diagonal lines indicating that most of the predictions are correct. From Fig. 1 (e), in the mutilabeling task,
OTN-LM outperforms the baselines in terms of accuracy, macro-F1, Matthew Correlation Coefficient (MCC) and
Cohen Kappa Score (CKS). It is common for multilabeling tasks to perform worse than binary classification tasks.
However, since the ENaMo outputs predicted probabilities for each label, we can report the predicted results to
the administrator in order of probabilities. We find that even if the first predicted label is incorrect, the first and
second predicted labels combined show an accuracy of 97.56%.

3. Experimental Validation

We verify the effectiveness of EDiMo and ENaMo in assisting locating of misconfigurations on an actual OTN
system, as shown in Fig. 2 (a). In the multivendor data plane, we use 8 servers, 2 (virtualized) packet switches (Dell
S4128F-ON), 8 (virtualized) transponders (ADVA FSP3000), 4 (virtualized) ROADMs (Lumentum ROADM-20)
and 2 (virtualized) optical switches (Polatis). We use 4 SMFs to emulate spatial division multiplexing (SDM). In
the control plane, we embed the fine-tuned EDiMo and ENaMo in our intelligent OTN agent (it is no problem to
embed the models in the controller). We show 6 cases, in each case, we try to build a lightpath, the agent captures
the real-time configurations and reports class and labels after model inference. The administrator finds and fixes
the configurations according to the diagnosis of the models.

We report the records of the 6 experimental cases in Fig. 2 (b). It can be found for the binary classification,
EDiMo successfully divides Case 1 and other cases. For the error configurations, we capture top 2 predicted
labels. Only Case 5 required the second ranked label to correctly identify the error. In all other cases the first
predicted label is sufficient. The second predicted label is correct in Case 5. More specifically, in Case 1, the
configuration is correct, we retrieve the pre-FEC bit error rate (BER) 1.39 × 10−4 of Transponder 5, and we
successfully ping from Server 1 to Server 5. In Case 2, the misconfiguration is from a too high attenuation in
the out-port of ROADM 2. We fix the attenuation according to the hint from the agent, and then we successfully
ping from Server 3 to Server 7. In Case 3, the error is mismatch of frequency in Transponder 6, which causes
RX power blocking. We fix the error and successfully ping the corresponding servers. In Case 4, we fix the error
client-to-network connection in Transponder 3 according to model inference labels. In Case 5, we find and fix the
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Fig. 2. (a) Experiment setup; (b) demonstration by cases.

incorrect deletion of a necessary connection in Optical Switch 2 according to the second predicted label. In Case
6, we prove the OTN domain has no problem (with pre-FEC BER = 2.06×10−4), and we find and fix the problem
in the VXLAN configurations in Packet Switch 1 according to the hint from the agent.

4. Conclusion

In view of the high incidence of configuration errors in SDN-based OTNs, and considering that the process of error
locating conforms to the natural language understanding, we implement (partial) automation of configuration error
diagnosis taking the advantage of NLP. More specifically, we collect OTN vocabulary and OTN corpus to pre-train
the original LM (bert-base-cased) and obtain OTN-LM. We then use the error configuration dataset to train
OTN-LM and get EDiMo and ENaMo, and the two models are for error/correct configuration classification and
error configuration locating (labeling), respectively. In evaluation, EDiMo achieves 97.89 in F1 score, and ENaMo
achieves 85.26 in macro-F1 score. The top 2 predicted labels can improve the diagnosis accuracy up to 97.56%.
Furthermore, we demonstrate the effectiveness of the fine tuned model on an OTN experimental system. Although
we have not yet achieved complete automation (locating specific errors), locating errors to device nodes has greatly
accelerated the process of manual error shooting. The proposed approach is not limited to point-to-point setups,
and it would support meshed OTNs etc., after the expansion of the dataset.
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