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Abstract: We propose an AI-powered network diagnostic strategy including alarm
clustering and fault localization with >98% accuracy for up-to 16-degree ROADMs and
demonstrate the advantages of using NLP in encoding. © 2023 The Author(s)

1. Introduction
Optical networks create the underlying interconnection for the global internet and enable 5G and future 6G applica-
tions. Network interconnection can be visualized by a topological graph showing the arrangement of components,
equipment, and fiber connections. A graph neural network (GNN) [1] is one type of artificial neural network that
can process the attributes of a graph, such as node or edge features, to update graph representations and extract
essential information. GNNs have been widely applied in citation networks, social networks and chemistry for
drug discovery [2]. Recently, GNNs have been adopted to tackle problems in optical networks such as fault lo-
calization [3] and traffic prediction [4]. Previous work on fault localization [3] can only predict a single failure,
which may not be sufficient for practical applications.

In this paper, we propose an artificial intelligence (AI)-powered network diagnostic model that can deal with
multiple failure sources through 1) linkage prediction for alarm clustering and 2) fault localization enabled by
inductive representation learning on a network topology. Moreover, we introduce a natural language processing
(NLP) technique for the generation of alarm feature vectors. In contrast to binary representations using one-hot
encoding, we demonstrate that feature vectors created by NLP using the alarm descriptions can not only reduce
computational complexity through dimensionality reduction, but also enable zero-shot learning for unobserved
alarms during training.

2. Network diagnostics
Figure 1(a) presents a diagram of an optical network consisting of 10 reconfigurable optical add-drop multi-
plexer (ROADM) nodes within which seven nodes labelled as nA, ... ,nG report alarms and three service paths
experience network outages. Fig. 1(b) illustrates a 3-degree ROADM composed of line amplifiers (LAs), wave-
length selective switch (WSSes), array amplifiers (AAs), multicast switches (MCSes) and optical transponders

Fig. 1: (a) Diagram of an optical network consisting of 10 reconfigurable optical add-drop multiplexer (ROADM) nodes, (b)
illusration of a 3-degree ROADM node, (c) network element card-level sub-graph Gsub of the three service paths with alarms,
(d) linkage prediction and, (e) fault localization over three alarm clusters Gc1 , Gc2 and Gc3 .
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(OTs). Service path 1 establishes a connection between nA and nC and has an A-Z topology within node nA
of OT→MCS→AA→WSS→LA and the reverse within node nC as well as LA→WSS→WSS→LA at optical
passthrough node (nB).

Algorithm 1 Network diagnostics
Input: G(V,W,X): graph with nodes V, edges W and features X

Dh: hidden layer dimension, K: aggregation depth
Process:

while # of alarms in G(V,W,X)) > 0 do
central node←select a ROADM with most alarmed OTs
common service path← pick one alarmed OT associated path
Gsub← add paths sharing equipment elements
[Gc1 , ...,GcM ]← Linkage(Gsub)
for j = 1 ... M do

FaultList← Localizer(Gc j )
end for
G(V,W,X)← G(V,W,X) - Gsub

end while=0
Output: FaultList

To make the network diagnostic solution
more flexible, instead of the global graph
G(V,W,X), a sub-graph Gsub with node
features such as node alarm embedding xxxa

v
and path index xxxt

v, ∀v ∈ V is processed, see
Algorithm 1. A network element card-level
Gsub is constructed as illustrated in Fig. 1(c)
after selecting nA and path 1 as the central
node and common path, respectively, and
adding interconnected paths 2 and 3 that
share network elements with path 1. Note
that each service path can contain multiple
wavelengths. In order to cope with multi-
ple failure sources, we divide the fault lo-
calization problem into two sub-problems:
1) a linkage problem where a link predic-
tion algorithm estimates whether all the in-
terconnected paths with outages are affected by a common failure source and creates alarm clusters, and 2) a node
classification problem where a classification algorithm locates the node(s) with the main failure for each cluster.
Fig. 1(c) and (d) illustrate the process of alarm linkage prediction and fault localization for each alarm cluster. Both
linkage and localization models use GraphSAGE [5] which updates node representations by aggregating node fea-
tures in the local neighborhood. In Linkage(), xxxa

v is concatenated with xxxt
v as a joint node representation, and edge

vectors are updated by concatenating the representation of the start and end nodes of the edge. Each edge vector
is independently fed through a fully-connected layer, a non-linear function and a second fully-connected layer
to determine the linkage between the network elements and create M clustered alarm graphs Gc j , ∀ j ∈ 1, ...,M.
Fault localization Localizer() is applied for each Gc j and only node alarm embedding xxxa

v is used as input. Each
node representation updated by GraphSAGE independently goes through two sets of fully-connected layers and a
non-linear layer for classification. Nodes of Gsub are removed from G(V,W,X) before a new loop is started, and
Algorithm 1 terminates when all of the alarms are processed.

3. Implementation and Performance
We implement the proposed network diagnostic model on a network of Nokia 1830 Photonic Service Switch (PSS)
nodes, which offers scalable and optimized end-to-end optical transport and switching. Different failure-associated
alarm patterns are extracted from the logs of the network with 6 ROADM nodes and then generalized to arbitrary
topology and ROADM degrees. We develop algorithms to generate various network topology graphs with alarms
triggered by random failures out of 8 fault sources such as various network equipment card failures, broken fiber
spans, and OT misconfigurations. To avoid ambiguity in alarm clustering, we apply a rule in the graph construction
that each alarm will only be invoked by one failure. A dataset including 17,380,726 nodes and 7,941,340 edges
with ROADM degrees from 2 to 16 is prepared and applied to train Linkage() with a split ratio of 60%, 20%, and
20% for training, evaluation, and test, respectively. M clustered alarm graphs, Gc j , of Gsub are applied to train the
Localizer(). In total, 19 types of alarms are used, and four of them, including alarm “PUMPFAIL”, are related to
optical amplifier failures. To test zero-shot learning, only “PUMPFAIL” is observed during the training and the
other three are unseen.

We use an NLP-based bag-of-words (BoW) method and term frequency-inverse document frequency (TF-IDF)
to generate alarm embeddings, xxxa, from the alarm descriptions in the product manual based on the word-count
occurrences and the importance of the words. Stop words such as “the”, “and”, and pronouns are excluded. Prin-
cipal component analysis (PCA) is applied to further reduce the embedding dimension to 10. Fig. 2(a) shows the
calculated cosine similarity between alarm “PUMPFAIL” associated with optical pump failure and the rest of the
alarms. Higher similarity with the other optical amplifier related alarms indicates that the NLP encoding scheme
can pick up the “meanings” of the alarms, unlike one-hot encoding which represents each alarm as a unique cat-
egory, i.e., a binary vector with a dimension of 19. In contrast to one-hot encoding, whose embedding increases
linearly with the number of alarm types, an NLP scheme can reduce the embedding dimension while maintaining
the conceptional meaning of each alarm.

A batch size of 5 and aggregation depth K of 2 are used for training Linkage() in GraphSAGE. Fig. 2(b) shows
the linkage accuracy versus the number of iterations for both NLP and one-hot encoding schemes and different Dh,
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Fig. 2: (a) Calculated cosine similarity between alarm “PUMPFAIL” and the other 18 alarms, (b) alarm linkage accuracy versus
the number of iterations in training Linkage() and (c) the linkage accuracy for models trained on different ROADM number of
degrees, (d) fault localization accuracy versus number of iterations in training Localizer() and (e) example of an alarm graph
including a 8-degree ROADM with 7 fault sources (left) and seven alarm clusters with an identified main fault (right).

which is the dimension of the hidden layer in GraphSAGE. Linkage accuracy is calculated by the ratio between the
number of correctly predicted edges and the total number of edges. A larger Dh provides faster convergence. Both
encoding schemes can achieve accuracy >98% after 300 iterations. However, the NLP scheme helps to reduce the
model complexity due to its smaller embedding dimensionality. Fig. 2(b) shows the linkage accuracy as a function
of ROADM degree for the models trained on different ROADM degrees. For degree >3, accuracy starts to degrade
for the cluster model trained on 2&3-degree ROADMs. For the model trained on 4- to 7-degree ROADMs, >90%
accuracy can be achieved from 2- up-to 16-degree ROADMs, indicating the flexibility of the cluster model.

For Localizer(), a batch size of 10 and aggregation depth K of 2 are chosen. Fig. 2(d) shows the localization
accuracy versus the number of iterations. Localization accuracy is the ratio between the number of clustered alarm
graphs with a correct failure estimation and the number of total clustered alarm graphs. 100% accuracy can be
achieved for both encoding schemes, but the model using NLP again has lower complexity. A clear advantage of
using NLP is observed in the zero-shot learning, where the three optical amplifier failure-related alarms that were
not seen in the training are tested. The localizer model using NLP can still localize the faults correctly due to the
high similarity between the alarms, however, the model with one-hot encoding completely fails, with zero correct
estimations. An example of network diagnostics over Gsub including an 8-degree ROADM with seven independent
failure sources is provided in Fig. 2(e) which shows seven alarm clusters after linkage prediction together with
correctly identified main faults (red dots) after fault localization.

4. Conclusion
We proposed an AI-powered network diagnostic strategy including alarm clustering and fault localization. >98%
clustering and 100% localization accuracy was achieved. We also demonstrated the advantages NLP in embedding
generation including the reduction of model complexity and excellent performance in zero-shot learning.
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