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Abstract: We present novel photonic neuromorphic computing scheme working with 

incoherent light while capable implementing negative weighting for the neural network and 

obtaining reliable/accurate computing of the linear multiply-accumulate function necessary 

for neural networks applications. 

1. Introduction 

Photonic computing holds the promise of achieving low-power and high-speed solutions to real-time machine 

learning and artificial intelligence applications, supporting future scalable and sustainable computing ecosystems 

which are expected to grow exponentially over the next decade. Most of the photonic computing solutions 

proposed to date rely on photonic integrated circuit (PIC) technology, silicon photonics chips (SIPH), or free-space 

optics [1–3], and use coherent interactions for the multiply-accumulate (MAC) operations [4–6].  

These technologies encompass several issues including yield and scaling limitations due to large chip size, 

large accumulated loss over the numerous Mach-Zehnder Interferometers (MZI) included in most designs, the 

required tight phase control, and high sensitivity to local temperature or vibrations. 

In contrast, fiber-optics and electro-optical communication industries offer a platitude of devices, which are 

larger in volume, but are based on mature technologies with high bandwidth and low power specifications 

alongside off-the-shelf availability and proven reliability.  

We have previously demonstrated an in-fiber-based optical computing unit, that combined with standard 

devices such as transceivers and Erbium-doped fiber amplifiers delivered both linear and non-linear functions 

required for neural network. While single unit results were impacted by coherence-induced phase-noise,  a 

redundancy-assisted full network emulation (ResNet-18) demonstrated  far-superior performance and accuracy 

over existing technologies [7,8].   

While incoherent photonic computing systems were previously investigated, most of them do not solve the 

issue of negative weights which is required for scalable neural network computations. Past applications which 

address this issue [9,10] utilize SIPH techniques, with the aforementioned limitations. 

In this paper, we present for the first time a fiber-based incoherent photonic computing system, which provides 

 

Figure 1: The constructed neuromorphic computing circuit. (a) system architecture; (b) picture of the assembled system; 

(c) schematic of the optical neuron. VOA – variable optical attenuator; Diff- differential output. 
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both negative and positive weights. We describe the system architecture, characterize neuron performance, and 

show numerical and experimental results of the processor. 

2. Experimental setup 

The complete photonic computing system architecture, comprised of multi-layer neural network, is depicted in 

Figure 1(a). Analog electronic signals are generated by the control board and are converted into analog optical 

signals using modulators. These signals are then weighted and injected into the first neural layer with addition of 

bias. Each neuron preforms an analog nonlinear function over the sum of weighted inputs and sends the resulting 

amplitude to the next layer. The outputs of the output layer neurons are read by the control board via photodiodes. 

Picture of the assembled system is seen in Figure 1(b). The operation of a single neuron with 2 inputs is illustrated 

schematically in Figure 1(c).  

The neuron employs a push-pull mechanism in order to realize positive and negative weighting. Each input is 

split in a 30/70 ratio by a fiber-coupled splitter. The 70% leg, acting as the positive weight, passes through a 

variable optical attenuator (VOA) controlled individually by the control board. The 30% leg acts as the negative 

weight and is not attenuated. All the positive and negative weights legs are combined by a fiber-coupled combiner 

into a positive input port and negative input port and injected into a dual balanced photodiode. The differential 

output voltage is then converted into an analog optical signal which represents the total output of the neuron.  

3. Results 

We first characterized the timing of the positive and negative weights. For that purpose, a 20ns square pulse at 

1500nm was inserted into a single input of the neuron. The output was measured by an oscilloscope (Keysight 

MXR604A), as shown in Figure 2(a). A delay line with length 40cm, equivalent to a 2ns delay, was then added to 

the optical path of the positive weights in order to show the negative and positive weights separately, as shown in 

Figure 2(b). The graph shows that the negative weights preceded the positive weights, and that the added spikes 

are indeed 2ns long, as expected. 

 

We then inserted analog step functions with 4 levels into 2 inputs of the neuron, input1 with a 10ns step period 

and input2 with 40ns step period. The outputs were recorded at different states of the VOAs, shown in Figure 2(c). 

When both VOAs are closed the positive weight is equal to zero, resulting in negative descending steps. When 

both VOAs are fully open the intensity of the combined positive input is much higher than that of the combined 

negative input, leading to ascending steps. The state where one VOA is open and the other is closed is an 

intermediate state. The VOA of the shorter period input is open, so that input has a positive weight and hence 

displays ascending output. The VOA of the longer period input is closed, so it has a negative weighting and 

displays descending steps.  

 
Figure 2: Experimental results. (a) 20ns pulse at 1550nm injected into a single neuron input; (b) the same pulse, with 40cm 

delay line (equivalent to 2ns) added to the positive optical path; (c) 4-level step input signal injected into 2 input ports: input1 

with step period of 10ns and input 2 with step period of 40ns. The plot depicts the output when both VOAs are fully closed, 

fully open, and with one VOA closed and the other open; (d) Measured output vs. expected values. 

Table 1: CogniFiber Alpha prototype performance compared to competitors. Data is taken from Ref. [11]. 

 CogniFiber 

Alpha prototype 

Nvidia 

DGX A100 (2021) 

LightMatter 

Envise Server (2021) 

Power (W) 300 6500 3000 

Rate (K task/s) 100000 4800 24000 

Efficiency (K task/(s*W)) 333.3 0.73 8 
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We compared the output values measured by the dual balanced photodiode to the expected output values, as an 

assessment of the accuracy of the MAC operations, depicted in Figure 2(d). We expect the plot to be linear for an 

ideal MAC calculator. The plot in Figure 2(d) displays a linear fit with 𝑅2 = 0.9995, implying an excellent MAC 

accuracy of the neuron!. 

We completed a prototype comprising of 16 input channels and 4-layer classifier. The performance of 

CogniFiber’s Alpha prototype system is given in Table 1, where the performance of other systems was estimated 

by multiplying 2-fold their published results for deep learning recommendation systems (DLMR), the simplest 

benchmark results available. We compare our results to Nvidia DGX A100, which is an industry standard, and to 

another photonic accelerator, LightMatter Envise server. Our results display an acceleration of up to 20 times that 

of competing systems, with 2 orders of magnitude increase in power efficiency. 

The next evaluation included construction of a 3-layered neural network using our constructed processor. We 

have applied the realized photonic processor on “Seeds” dataset with 210 samples, 7 inputs, 3 classes. Good results 

were obtained as indicated in Figure 3 demonstrating both low loss as well as high accuracy in its performance. 

 
Figure 3: Experimental results. The obtained performance of loss and accuracy. 

4. Conclusions 

In conclusion, in this paper we have presented a photonic computing system based on hybrid fiber technology 

and optics communication devices, featuring positive and negative weighting scheme under incoherent data 

transmission conditions. We show that such design can achieve 5x to 20x acceleration while increasing power 

efficiency by over 100x. Demonstrating impressive performance having loss of <0.1 and accuracy of close to 1!. 
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