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Abstract: An optoelectronic analog Ising machine is experimentally demonstrated. The SpMV 

algorithm is applied to accomplish two MAX-CUT tasks mapped into 2048-spin Ising networks, 

taking only 1.68μs per iteration. © 2022 The Author(s) 

 

1.  Introduction 

Combinatorial optimization problems, which are known to be nondeterministic polynomial time (NP)-hard or NP-

complete problems, are considered challenging to traditional digital computers. Intensive research has been ongoing 

for more efficient computing concepts, amongst which analog Ising machines (AIM) have emerged as a promising 

solution. They work based on the concept that the combinatorial optimize problems can be mapped to the Ising model 

and implemented with artificial spin networks based on various analog physical systems, such as injection-locking 

lasers [1], degenerate optical parametric oscillator (DOPO) [2], spatial light modulation [3], opto-electronic oscillator 

(OEO) [4,5], etc. Among these proposed AIM schemes, the OEO-based AIMs [4,5], with their compact and stable 

setup without any nonlinear optical process or long-distance fiber based loops, have good potential to realize device 

integration and low-latency calculations. 

However, reported OEO-based AIMs often have limited number of spins (e.g. 100 spins as implemented in [4]), 

which makes it difficult to accomplish large-scale optimization calculations. In addition, the computation time (or 

latency) of existing demonstrated AIMs, which is no less than 24 μs for each iteration [2-5] resulted from long-

distance feedback loop or hardware limitation, needs to be improved.  

In this paper, an OEO-based AIM is experimentally demonstrated utilizing a commercial field-programmable gate 

array (FPGA) module with digital-to-analog and analog-to-digital converters (DAC/ADC). A sparse matrix–vector 

multiplication (SpMV) algorithm [6] is applied in the FPGA to calculate the feedback signals, considering that many 

combinatorial optimization problems can be mapped into Ising model with sparse spin-spin couplings. The MAX-

CUT tasks for 2048-spin lattice graph and random graph are both demonstrated in the OEO-based AIM setup. It takes 

no more than 1.68 μs for each iteration (~0.6 MHz iteration rate), much faster than those of the schemes in [2-5]. 

2.  Experimental Setup 

The experimental setup of the OEO-based AIM is shown in Fig. 1(a), which is quite similar with that presented in [4]. 

The setup includes both optical and electrical pathways. In the optical pathway, light from a distributed feedback 

(DFB) laser at the wavelength of 1550 nm is modulated by the feedback electrical signal 𝑓𝑛[𝑘] through a Mach–

Zehnder modulator (MZM) biased at the DC voltage of -Vπ/2, where Vπ is the half-wave voltage of the MZM. The 

feedback signal 𝑓𝑛[𝑘] can be expressed as [4]: 

𝑓𝑛[𝑘] = 𝛼𝑥𝑛[𝑘] + 𝛽 ∑ 𝐽𝑚𝑛𝑥𝑚[𝑘]𝑚                                                           (1) 

where 𝛼 and 𝛽 represent the feedback and coupling strength for the spin 𝑥𝑛[𝑘] during the kth iteration, respectively. 

Jmn is the coupling coefficient between the spins 𝑥𝑛[𝑘] and 𝑥𝑚[𝑘]. The calculation of 𝑓𝑛[𝑘] can be mapped into a 

matrix vector multiplication: 

𝐹 = 𝐶𝑋 = (𝛼𝐼 + 𝛽𝐽)𝑋                                                                           (2) 

where F and X are the N×1 matrices whose nth element is 𝑓𝑛 and 𝑥𝑛 in Eq. 1, respectively. 𝐶 = 𝛼𝐼 + 𝛽𝐽 is the coupling 

matrix, where I is the identity matrix and J is the N×N matrix whose element in the mth row and nth column is Jmn. 

Considering the spins in the Ising network may not be densely coupled, C could be a sparse matrix in many 

combinatorial optimization problems. 

The electrical pathway is the key part of the AIM system to realize large-scale sparse matrix calculation as well as 

low computation latency. It consists of an FPGA (Xilinx KU115), a DAC module with 2.6-GHz update rate and an 

ADC conversion module with a 2.6-GHz sampling rate. A SpMV algorithm [6] is applied in the 𝑓𝑛[𝑘] calculation of 
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the FPGA, in which the sparse matrix C is transformed into the Compressed Sparse Row (CSR) format. As the 

examples shown in the insets of Fig. 1(b), three 1×N matrices are conducted in the CSR format.  The non-zero elements 

in C are stored in the first 1×N matrix 𝑣𝑎𝑙 row by row, while the corresponding column numbers of the non-zero 

elements in the matrix C are stored in the second matrix 𝑐𝑜𝑙. The column numbers of the elements in 𝑣𝑎𝑙, which 

respectively correspond to the first non-zero element of each row in C, are stored in the third matrix 𝑝𝑡𝑟.  

 
Fig. 1. (a) Framework of AIM with FPGA. (b) Application of SpMV algorithm in CSR format with FPGA. 

As illustrated in Fig. 1(b), L multiplication units (L normally < N) are implemented to realize parallel integer 

multiplication of non-zero elements in each row of C with the corresponding elements in the N×1 matrix X.  Here 

noted that the non-zero elements are read from the matrix 𝑣𝑎𝑙. M non-zero elements [the values of M can be decided 

by the elements in 𝑝𝑡𝑟 , seeing inset in Fig.1(b)] are loaded into the L multiplication units (M ≤ L) for parallel 

multiplication. The elements in X are read from the Block RAM (BRAM) according to the position information stored 

in the matrix 𝑐𝑜𝑙 (the column numbers of the non-zero elements in the matrix C stored in 𝑐𝑜𝑙 are corresponding to the 

row numbers of the desired elements for multiplication in X). Then the multiple output results from the multiplication 

units are summarized with adder tree, obtaining the multiplication-summarization result for the target row of the matrix 

F in each clock period. The results in each iteration are cached to the off chip DDR4 and the final output after 

completing all the iterations is transmitted to a computer through a USB interface. 

A trade off should be made among logic resources, spin number and calculation latency to achieve calculation of 

a large-scale spin network using limited hardware resources. The low computation latency is mainly resulted from the 

high synchronism and low transmission delay between the FPGA and ADC/DAC modules, as well as short-distance 

feedback loop in the OEO-based AIM and good hardware-level parallelism. It only takes 1.68 μs to finish one self-

feedback iteration in our demonstrated OEO-based AIM for a random graph task with 2048 sparsely coupled spins 

(details can be found in the next section), including 0.5-μs latency of ADC and DAC, which is much faster than the 

schemes presented in [2-5]. 

3.  Results 

A MAX-CUT task for a 64×32 lattice graph (seeing Fig. 2(a)) with coupling between all adjacent spin pairs is firstly 

performed by utilizing the OEO-based AIM setup. 200 independent trials each with 1000 iterations are conducted. 

Here the time-evolution parameters are set with α = 0.47, β = 0.53. The computation time for one iteration is around 

1.68 μs (~0.6 MHz iteration rate). As the results shown in Fig. 2(b), 90% ground state (GS) energy can be 100% 

achieved within 200 iterations in our demonstration. It can also be seen from the results illustrated in Fig. 2(c) that 

96% of the calculation trials can finally reach the ground state, while all the trials can achieve 96% ground state energy, 

showing the good performance of our OEO-based AIM setup in solving the MAX-CUT problem of relatively large-

scale lattice graph. 

As shown in Fig. 2(d), a random-graph MAX-CUT problem is also constructed to test the capability of the OEO-

based AIM setup for solving relatively complex combinatorial optimization problem. In this graph with a total of 2048 

spins, each spin is randomly coupled with 127 spins. 100 independent trials are carried out, each of which requires 

100 iterations. The iteration rate in this calculation is also ~0.6 MHz (~1.68 μs latency of each iteration), similar with 

that of MAX-CUT task for the 64×32 lattice graph. The solutions based on other two methods/setups are also 

calculated for references. The first one is calculated using the simulated annealing (SA) algorithm [7], in which 100 

independent trials each with 32,000 sweeps are conducted, and the mean of the obtained solutions is set as the final 

output. The second reference solution is obtained employing the OEO-based AIM setup presented in [5], in which the 
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high-bandwidth arbitrary waveform generator (AWG) and real-time oscilloscope (RTO) with better performance 

DAC/ADC but higher transmission latency are utilized to replace the DAC and ADC modules in our scheme. 20 

independent trials each with 30 iterations are conducted based on the AIM setup using AWG and RTO. As shown in 

Fig.2(e) and (f), the Ising Hamiltonian energy found after 100 iterations using our OEO-based AIM system is lower 

than that calculated with SA by 3%, but higher than that calculated with AWG and RTO by 14%. This may have 

resulted from the non-ideal effect of the AC coupling components in the DAC used in our scheme, compared with 

that of the AWG utilized in the reference AIM setup. However, much lower calculation latency can be achieved at the 

cost of only slightly higher minimum Hamiltonian energy that can be found and acceptable for many practical 

optimization problems, showing the good overall performance of our AIM scheme. 
 

  
Fig. 2. (a) A sketch of the 64*32 lattice graph. (b) Time evolution of success rate of solving the square lattice’s 

MAX-CUT for 1000 iterations (α = 0.47, β = 0.53). (c) The energy distribution for square lattice after 1000 

iterations. (d) A sketch of the random-graph. (e) Time evolution of Ising energy for random-graph, including 

100 independent trials, ( α = 0.5, β = 0.156), the blue area indicates the range of the energy of AIM solutions. 

(f) The Ising energy distribution for random-graph with AIM after 100 iterations.  

4.  Conclusion 

An OEO-based AIM employing commercial FPGA with DAC and ADC modules has been experimentally 

demonstrated. A SpMV algorithm has been applied in the FPGA to accomplish two MAX-CUT tasks (lattice graph 

and random graph) mapped into Ising network with 2048 spins using limited hardware resources. It takes only 1.68 

μs for each iteration, thanks to the high synchronism and low transmission delay between the FPGA and ADC/DAC 

modules, as well as short-distance feedback loop in the OEO-based AIM and good hardware-level parallelism. 
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