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Abstract: An enhanced EDFA model employing auxiliary neural networks is proposed. Adaptive 

to different devices, the model reduces the root mean square error from 0.04 to 0.02 dB with 

significantly less amount of training data. © 2022 The Author(s)  

 

1. Introduction 

Optical networks are evolving towards a more dynamic and flexible paradigm [1,2]. Fast add/drop of the service 

wavelengths in the network requires estimation on the performance of unestablished lightpath (LP). An accurate gain 

modelling for erbium doped fiber amplifiers (EDFAs) helps a better prediction on the performance of to-be-established 

LP, as well as better evaluation of the impact on the existing/remaining LPs during channel add/drop operation.  

Accuracy is one of the important metrics for the gain modelling:  long-haul systems consist of tens of EDFAs, and a 

small prediction error for single EDFA might result in huge signal power deviation from the actual power.  In addition 

to strict requirement for accuracy, a good EDFA gain model is expected to work under various channel loadings. 

EDFA gain profile changes drastically under different channel loadings due to the spectrum hole burning (SHB) effect.  

SHB is very complicated in nature and there lacks a tractable analytical tool so far. Developing an accurate EDFA 

gain model with SHB effect considered and suitable for a variety of channel loading conditions is desired.   

In recent years, machine learning (ML) techniques have been employed to model the EDFA behaviors [3-7]. A 

pioneering work on ML based EDFA gain modelling was reported in [3], and excellent accuracy with a root mean 

square error (RMSE) smaller than 0.02 dB is achieved. It is worth mentioning that in that work, the channelized 

differential gain (i.e. gain profile change from full-fill channel loading) rather than gain profile itself, is modelled. 

Directly applying the gain model obtained from one EDFA to the others could experience a decrease in accuracy. In 

[5], a generalizable model is proposed, and its performance is evaluated across different EDFAs from the same make. 

The generalization leads to a reduced mean square error from about 0.06 to 0.02 dB2 (equivalent RMSE from 0.25 to 

0.14 dB), at the price of 3 times larger training dataset. In [6], a hybrid approach combining ML and physical model 

is introduced to model the EDFA gain for non-flat input spectrum. The model works well at different gains with a 

RMSE of 0.05 dB. However, as pointed out in the paper, the SHB effect is ignored, therefore the model is more 

suitable for submarine application with channel loading close to full-fill. The modelling reported in [3] yields the 

highest accuracy reported so far, and the model is suitable for terrestrial scenarios where the channel loading varies 

widely. By further incorporating the in-band tilt parameters, the same methodology has been proved to be capable for 

EDFA in-band gain ripple prediction with a good prediction accuracy [4]. However, its generalization performance to 

different gains of the same device, or different devices has yet to be investigated.  

In this paper, we first show significant difference in the amplifier’s gain behavior between different devices or 

different gains of the same device.  Prediction accuracy reduces when apply the model trained on one device to the 

others. We then propose to use an auxiliary neural network (Aux-NN) to account for the difference. Results show a 

significantly improved model accuracy with greatly reduced retraining efforts.  

2. Evaluation of model generalization 

The ML model used in [3] is based on the multi-layer perceptron (MLP) structure, with 1 input layer, 2 hidden layers 

and 1 output layer. The input layer takes the channelized input powers of a given channel loading. The output layer 

gives the model results of channelized gain difference. The gain difference, ∆𝐺𝑘(𝜆𝑖), is defined as  

 ∆𝐺𝑘(𝜆𝑖) = 𝐺partial
𝑘 (𝜆𝑖) − 𝐺full(𝜆𝑖),                                                                   (1)  

where 𝐺partial
𝑘 (𝜆𝑖) is the gain of the 𝑖-th wavelength channel when the 𝑘-th partial loading pattern is configured, 

𝐺full(𝜆𝑖) is the gain of channel 𝜆𝑖 when a full-fill loading pattern is configured.  

The experiment setup we used for data collection is shown in Fig. 1(a). A flat C-band amplified spontaneous 

emission (ASE) source filtered by a wavelength selective switch (WSS) is used for channel loading generation. The 

loading spectrum is configured based on 50 GHz grid, where the odd channels are used to load signal tones and probe 

tones, and the even channels are blocked for noise floor measurement. The probe tone power is much lower than the 

signal one, ensuring a negligible impact to signal gain performance. As proved in [3], the signal + probe configuration 
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attains accurate full-band gain measurements. The generated loading spectrum is then given as the input of the EDFA 

under test (EUT). Three EUTs of the same model are tested.  An optical spectrum analyser (OSA) is used to measure 

the input and output spectrums of the EUTs. Then the differential gain spectrum are calculated.    

We first collected 4500 measurements from EDFA#1 at 23 dB gain and use 3500 of them to train the ML model, 

as the baseline model. The rest 1000 sets are used to verify the baseline performance. Fig. 1(b) shows the baseline 

model result of predicted ∆𝐺𝑘(𝜆𝑖) vs. measured ∆𝐺𝑘(𝜆𝑖). In this result, the training and prediction are under the same 

condition. The warmer colour (yellow) represents higher probability while the colder ones (blue) are low probability. 

In the baseline case, the scattered points fall on the straight diagonal line with low noise, and the model RMSE is 

0.019 dB. 

For different conditions, our data collection covers two scenarios: the same EDFA with different gains and 

different EDFAs with same gain. In total we tested 3 different conditions,  including 1) EDFA #1 of 14, 18, 21 dB 

gains, 2) EDFA #2 of 23 dB gain and 3) EDFA #3 of 23 dB gain. Note that, for condition-1, only 14 dB data is 

discussed in the rest of the paper, as the most severe degradation happens under this gain setting. For each condition, 

we collected 1000 dataset. Fig. 1(c)-(e) show the corresponding results of applying the baseline model to EDFA#1 14 

dB gain and EDFA#2/EDFA#3 with 23 dB gain. The predicted vs. measured results become noisy (larger errors) and 

show loading dependent bias or rotation. The model RMSE degrades to 0.03~0.04 dB. To be noted, the max error can 

be greater than 0.2 dB, which may result in 2.8 dB~8 dB power prediction error for a long link scenario with 40 

EDFAs deployed (depending on the error is more biased towards a same direction or random directions). 

3. Aux-NN assisted EDFA gain model and performance verification  

To adapt the baseline model to new conditions without losing performance, the straightforward way is retrain the 

model using additional large amount data collections covering all new conditions, or apply transfer learning. However, 

a large number of data measurement is time consuming, and should be avoided if possible.  

To reduce the required retaining efforts, we propose to use an auxiliary NN to more efficiently adapt the baseline 

mode to different conditions. The proposed model is shown in Fig. 2, which contains a main-NN and an Aux-NN. The 

main NN is the same as the baseline one. The Aux-NN also uses MLP structure with two hidden layers, taking the 

main-NN outputs and pre-set gain as its inputs, outputting a channelized correction factor 𝐶𝑘(𝜆𝑖) for the given 𝑘-th 

channel loading. The final model’s outputs ∆𝐺𝑜𝑢𝑡,𝑘(𝜆𝑖)  is 

∆𝐺𝑜𝑢𝑡,𝑘(𝜆𝑖) = ∆𝐺𝑚𝑎𝑖𝑛,𝑘(𝜆𝑖) + 𝐶𝑘(𝜆𝑖).                                                           (2) 

The main-NN adopts the NN weights of the baseline model, which are trained by 3500 measurements from 

EDFA#1 of 23dB gain. We individually train the Aux-NN for each condition, using 600 dataset for training and the 

rest 400 for verification. Fig. 3(a)-(c) show the predicted vs. measured results of the final model outputs, corresponding 

to the corrected versions of Fig. 1(c)-(e). After Aux-NN correction, the model results are much improved: the overall 

model prediction error has been reduced and the loading dependent bias has been removed.  

 
Fig. 1. (a) Experiment setup for data collection. (b)-(e) Predicted vs. measured gain difference results: (b) the baseline model of EDFA#1 

with 23dB gain (RMSE = 0.019dB); and adapt the baseline model to different conditions of (c) EDFA#1 at 14dB gain (RMSE = 

0.041dB), (d) EDFA#2 with 23dB gain (RMSE = 0.031dB), and (e) EDFA#3 with 23dB gain (RMSE = 0.030dB) 
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Fig. 2. Aux-NN assisted ML EDFA gain model.  
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The model error probability distributions are illustrated in Fig. 3(d)-(f), where the light blue colored bars are the 

error probability of the main-NN outputs, and the light red bars are the Aux-NN corrected ones. The errors are counted 

based on the bin size (step size of x-axis) of 0.005dB. As can be seen, without applying Aux-NN, the error probability 

distributions are more spread and in some cases they are no longer symmetric. The main-NN model RMSEs are 0.041 

dB (EDFA #1 with 14 dB gain), 0.031 dB (EDFA #2 with 23 dB) and 0.030 dB (EDFA #3 with 23 dB gain). After 

applying the Aux-NN, the error probability distributions are more confined to the center, and the final model RMSEs 

are improved to 0.015 dB, 0.018 dB, and 0.021 dB respectively. 

Compared to retraining using full data for each new condition, the required training data of Aux-NN approach is 

much reduced, from several thousands to hundreds. One of the reason could be that, the condition deviations from the 

baseline are relative small, as those deviations usually come from the slight different performance of used physical 

components such as Erbium doped fibers (EDFs), gain flattening filters, etc. Thus, the Aux-NN can be trained to 

predict the corrections using reduced dataset.   

4. Conclusion 

We propose an improved ML EDFA gain model, whose performance when adapting to new conditions is enhanced 

by an Aux-NN. In the three tested conditions, the model RMSEs are reduced from 0.04dB to around 0.02dB. The 

required retraining data for each condition is reduced from few thousands to few hundreds. This reduced training 

efforts could potentially benefit the whole network modelling with a much improved efficiency. Moreover, the Aux-

NN approach could also be potentially applied to other device ML modeling to improve the training efficiency when 

adapting to new conditions. 
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Fig. 3. Predicted vs. measured gain difference results after applying Aux-NN corrections for (a) EDFA#1 with 14dB gain, (b) 

EDFA#2 with 23dB gain and (c) EDFA#3 with 23dB gain; (d-f) are the error probability distributions corresponding to three 

conditions with and without applying Aux-NN corrections.    
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