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Abstract:
We propose a photonic max-pooling architecture for photonic neural networks which is
compatible with integrated photonic platforms. As a proof of concept, we have experimen-
tally demonstrated the max-pooling function on a programmable photonic platform con-
sisting of a hexagonal mesh of Mach-Zehnder interferometers. © 2022 The Author(s)

1. Introduction

Machine learning and deep neural networks have been essential to the recent advancements in a wide range of tech-
nologies, from communications and pattern recognition to medical diagnosis and treatment. As the number and
variety of such applications increase, the need for more computation power grows. Digital clock-based systems,
mainly graphics processing units (GPU), have been the dominating hardware platform for implementing artificial
intelligence systems. Despite being highly reconfigurable and adaptable to different networks, their computation
speed is generally limited by the clock frequency as well as the memory access time.

Photonic integrated circuits offer promising solutions to address the challenges with conventional digital plat-
forms by benefiting from a very large optical bandwidth for signal processing as well as energy efficient in-
terconnects. Different implementations of the essential blocks such as weight-and-sum for matrix multiplica-
tion (linear computation) and nonlinear activation functions have been demonstrated both optically and opto-
electronically [1–6]. In addition to block-level, photonic neural networks have been demonstrated at the system
level for applications such as image classification and fiber nonlinearity compensation [7, 8].

Deep neural networks typically consist of the interconnection of multiple layers of neurons with different con-
figurations such as convolution, fully-connected, and pooling layers. Pooling layers are typically used to down-
sample a given matrix by calculating the average (average-pooling) or maximum (max-pooling) of its components
(Fig. 1a). This results in invariance to spatial translations of the input, faster convergence, and less computation
load for the next layers [9, 10]. Max-pooling layers are especially useful and widely used to extract bright fea-
tures on dark backgrounds and can extract frequent as well as rare features [11]. Unlike average-pooling that
is a linear transformation and can be implemented using linear components such as a multi-mode interferom-
eter [12–14], max-pooling is a nonlinear transformation and implementing such function on a silicon photonic
platform is challenging. In one demonstration, VCSELS is used as a nonlinear device [9] that, despite impressive
results, is challenging to implement on integrated silicon photonic platforms. Here we propose an optical-input
optical-output max-pooling architecture that benefits from the nonlinear characteristics of a ring modulator and
is compatible with commercial silicon photonic processes. To experimentally demonstrate max-pooling function-
ality, the proposed architecture is implemented on the iPronics Smartlight Processor using a hexagonal mesh of
Mach-Zehnder interferometers (MZI) [15].

2. Proposed Max-pooling Architecture

Figure 1b shows the proposed max-pooling architecture where A and B are the optical inputs and the output
corresponds to the maximum of the inputs. Initially, the ring modulators are biased in such a way that their
resonance wavelengths are symmetrically positioned around the wavelength of operation, λ0 (Fig. 1c). The phase
shifter within ring can be based on different tuning mechanisms such as carrier injection and thermal tuning,
resulting in different processing speeds. The rings are followed by directional couplers to tap off a small fraction
of the optical signals. The output of the couplers are coupled to two photodiodes (PD) connected in a balanced
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Fig. 1. (a) The structure of a typical deep neural network for image recognition and how max-pooling
layers can be used to down-sample the input. (b) Proposed max-pooling architecture using integrated
ring modulators and (c) the transfer characteristics for different input scenarios.

scheme. Therefore, the output current idi f f is a function of the difference in the input optical powers (i.e., A−B).
Then, idi f f is amplified using a limiting amplifier to drive the rings. The output voltage of the amplifier is limited
to two values, i.e., VA and VB, such that each voltage level brings the corresponding ring resonance to λ0. If A > B
(A < B), the output current is positive (negative) and hence, vdi f f equals VA (VB), aligining the resonance of ring
B (A) with λ0, heavily attenuating input B (A). In this case |idi f f | is maximized, the system maintains this state for
given inputs, and the output equals the larger optical input. Note that in either case, the resonance wavelength of
one ring is locked to λ0 making the system very stable and enables the detection of very small differences between
the inputs which enhances the sensitivity and dynamic range of the circuit.

3. Experimental Results

As a proof of concept, the proposed max-pooling architecture is implemented on the iPronics Smartlight Processor.
Note that this architecture can be implemented on any other integrated photonic platform with phase modulators
and PDs. Figure 2a shows an MZI-based hexagonal mesh where the amplitude and phase of each arm can be
controlled independently. The MZI mesh has one optical input that is split into two signals, A and B, using a tunable
coupler to define the ratio between the two. On each arm, a ring modulator is formed by properly configuring the
system where the optical phase within each ring can be controlled using a thermal phase shifter. The rings are
identical and the resonance wavelengths are symmetrically biased around λ0 = 1550 nm such that initially both
rings have high transmissions. After each ring, 1% of the optical power is tapped off and photo-detected to generate
the difference current that is amplified to drive the ring modulators. The two arms are then combined (red dashed
box) and the output is monitored.

Figure 2b shows three different graphs. The green curve corresponds to the case that only the output of ring A is
monitored while the input power ratio is swept using the input tunable coupler. The orange curve shows the similar
scenario for ring B. In both cases, a monotonic increase in the output power can be seen. When the opto-electronic
loop of Fig. 1b is closed and depending on the input power difference, the smaller input is heavily attenuated by its
corresponding ring modulator when the resonance wavelength of the ring is aligned with 1550 nm. The blue dots
in Fig. 2b show the measured output of the circuit as a function of the input power ratio (i.e., A/(A+B)), which
demonstrates the realization of max-pooling function (i.e., output = max(A,B)). It can be seen that at any input
power ratio, the output follows the larger input. Note that by using fast modulators (e.g., PN-junction modulator)
and wideband limiting amplifiers, bandwidths of tens of GHz (i.e., picosecond response time) can be achieved.

M1J.6 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



Fig. 2. (a) Implementation of the proposed max-pooling circuit on a programmable photonic plat-
form. (b) Output power of the photonic max-pooling circuit as a function of the input power ratio.

4. Summary and Conclusion

A photonic max-pooling architecture is proposed where two input optical signals are coupled to two ring mod-
ulators. The resonance wavelength of the ring corresponding to the smaller input is locked to the wavelength of
operation resulting in large attenuation of the smaller signal while the larger input is transmitted to the output
with no attenuation. The functionality of the circuit is experimentally demonstrated using a programmable pho-
tonic platform. For larger scale networks, the number of optical inputs can be increased by using multiple 2-input
blocks in parallel. Moreover, the proposed architecture can be implemented on other integrated photonic platforms
and by using fast modulators and PDs, an operation bandwidth of tens of GHz can be achieved.
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