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Abstract: We use a neural network trained jointly by multi-task learning on datasets acquired at
multiple wavelengths to mitigate the impact of chromatic dispersion in 4×200Gb/s CWDM4 PAM4
transmission. By sharing a single set of weights among all involved wavelengths, while keeping the
biases reconfigurable, we enable logic simplification of multipliers in the VLSI implementation of the
neural network. Results show that the neural network equalizer achieves a similar BER compared with
a Volterra equalizer with 71% reduction in hardware area. © 2022 The Author(s)

1. Introduction

Transmission of optical signals in fibers suffers from non-linearity effects and chromatic dispersion (CD) in in-
tensity modulation / direct detection (IM/DD) systems [1]. Such effects lead to intersymbol interference and bit
errors. An effective countermeasure are Volterra nonlinear equalizers (VNLEs) with kernels h1 · · ·hp, as shown in
Fig. 1(a). However, VNLEs suffer from huge computation complexity and numerical instability [2].

Recent literature has proposed neural network nonlinear equalizers (NN-NLEs) to realize nonlinear equalization
and demapping [2, 3]. For instance, as shown in Fig. 1(b), in [3] NN-NLEs are used to compensate CD in IM/DD
systems. Whereas the performance is promising, the complexity remains critical for high-speed communication
systems. When the equalization target for a NN-NLE changes, for example when addressing different CD values,
the NN-NLE requires reconfiguration. To allow for such reconfiguration, usually weights (multiplicative factors
in neural network layers) are kept flexible, which is extremely costly in terms of chip area. To reduce the hardware
cost of NN-NLEs, several authors have proposed solutions like pruning, weight clustering and quantization [4].
Here we propose a radical approach suited for VLSI (very large scale integration) implementation. We use multi-
task learning (MTL) [5] to train a NN-NLE on datasets of multiple wavelengths together. We freeze and share
the weights of the NN-NLE among all involved wavelengths to simplify the multipliers, and keep the biases
reconfigurable for each wavelength to preserve the adaptability. We adopt our approach for the use case, considered
in [3], of CD compensation in a CWDM4 4×200Gb/s system and achieve area savings in the order of 70%.

(a) Volterra nonlinear equalizer (VNLE) (b) Neural network nonlinear equalizer (NN-NLE)

Fig. 1. Volterra nonlinear equalizer and neural network nonlinear equalizer.
2. Neural Network Nonlinear Equalizer

As explored in [2, 3], NN-NLEs proved to outperform VNLEs. Such VNLEs (NN-NLEs) are trained on datasets
of different wavelengths separately as shown in Fig. 2(a) (Fig. 2(b)), leading to multiple sets of kernels (weights
and biases). For a specific wavelength, a specific set of kernels (weights and biases) should be loaded into the
hardware. Therefore, full hardware implementation of multipliers should be used to enable different parameters
for different wavelengths. In addition, large on-chip memory is required to store the parameters.

(a) Wavelength-specific VNLEs require to
switch between matching pre-defined sets of
Volterra kernels.

(b) Wavelength-specific NN-NLEs
conventionally train sets of match-
ing weights/biases separately and
switch between them.

(c) MTL-trained NN-NLE can
match specific wavelengths by
switching merely between biases
and sharing a fixed set of weights.

Fig. 2. Wavelength-matching with a) VNLEs, b) weight/bias-switching NN-NLEs and c) bias-
switching NN-NLEs with fixed weights.
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3. Multi-Task Learning for Neural Network Nonlinear Equalizer

To reduce the hardware cost, as shown in Fig. 2(c), we use MTL to train a single NN-NLE on datasets of multiple
wavelengths jointly to share the weights and keep the biases still flexible. Flexible biases equip the NN-NLE with
the adaptability for different wavelengths, which is essential to achieve a low BER (bit error rate). On the other
side, the shared weights are fixed to simplify the multipliers.

During MTL training, data from the different wavelengths are fed into the NN-NLE simultaneously. For each
wavelength, the CD-specific loss Li is weighted by a coefficient γi and the total loss is defined as

Ltotal =
N

∑
i=1

γi ·Li (1)

where N is the number of different CD targets. We apply GradNorm [6] to adjust γi in each batch step. As shown
in Fig. 2(c), the MTL-trained NN-NLE has only one set of weights and multiple sets of biases. Weights are shared
among all involved wavelengths. On the other hand, biases are CD-specific for each wavelength. The flexibility
allows specific neurons to be activated by adjusting their biases. Therefore, the NN-NLE with flexible biases
can adapt to different CD values and achieve a lower BER. An interpretation of this approach is that we overlay
multiple logic NN-NLEs on a single physical NN-NLE and we use the biases to enable the sub-NN-NLE we need.
The key point is that flexible biases do not impose much area cost, because they are inputs to the adders, which in
VLSI are much simpler than multipliers.

Our MTL-trained NN-NLE generates a single set of shared weights among all involved wavelengths. Since these
weights are inputs to multipliers implementing the NN-NLE, the multipliers can be simplified significantly when
the weights are fixed, as shown in Fig. 3(a). Fig. 3(b) demonstrates hardware area reduction of an 8-bit multiplier,
with an average saving of 76.22%. The x-axis shows the frozen weight, and the y-axis shows the area ratio of
the simplified multiplier to the full multiplier. These area savings were obtained using Design Compiler [7] for
logic synthesis using 45nm process technology. According to Fig. 3(b), the area of the multipliers can be reduced
significantly. In contrast, VNLEs and NN-NLEs trained with individual wavelengths still require full multipliers
for hardware implementation and therefore cannot profit from any area reduction.

(a) Multiplier simplification.

Area ratio of simplified multiplier to full multiplier
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(b) Area ratio for different 8-bit quantized weight after multiplier simplification.

Fig. 3. Illustration of multiplier simplification and area ratio for different weights.
4. Experimental Setup

Fig. 4 illustrates the IM/DD measurement setup and offline DSP for 10 km PAM4 transmission with 112 GBd per
lane. The 3 dB bandwidths are written below each electrical/optical component. At the transmitter (Tx), pseudo-
random binary sequences (PRBS) are Gray-mapped to PAM-4 symbols after duobinary precoding [3]. A raised
cosine (RC) filter implements pulse shaping with roll-off factor of 0.14. After resampling, a 120 GS/s arbitrary
waveform generator (AWG) converts the digital samples to analog signals which are amplified by a 60 GHz
driver amplifier (DA) towards an O-band Mach Zehnder modulator (MZM). While the focus are standard O-
band CWDM4 wavelengths 1270nm, 1290m, 1310nm and 1330nm, further captures at in-between wavelengths
allow for better insights of the performance/wavelength relationship. After 10 km standard single mode fiber
(SSMF) transmission, a variable optical attenuator (VOA) controls the received optical power (ROP) at the in-
put of a praseodymium-doped fiber amplifier (PDFA) at 7 dBm. Thereafter, the broadband noise of the PDFA is
suppressed by an optical filter. The filtered optical signal is fed to a photodiode (PD) whose electrical output is
digitized by a 256 GS/s digital oscilloscope. At the receiver (Rx), timing recovery first operates at 2 samples per
symbol (sps), and then the signals are downsampled to 1 sps for equalization. Modulo 4 [3] and PAM4 decisions
are performed before BER estimation.

Fig. 4. Experimental 10km setup with offline DSP.

The design results for VNLE and NN-NLEs are shown in Table 1. VNLE and NN-NLEs applied in this paper
are both trained on a duobinary (DB) target [3]. DB NN-NLEs are trained using MTL with 500 epochs to reach a
low mean squared error. We use 182k PAM4 symbols for training and other 45k symbols for inference.
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All multipliers have 8-bit input and 16-bit output. Inputs with larger bit-width are truncated to the 8 most sig-
nificant bits (MSB). The bit-width of adders increases level by level to keep the carry bit. Uniform quantization is
adopted. Lower bit-width also can be applied during hardware implementation, without impact on the proportional
area savings.

5. Results and Discussions
Table 1, Fig. 5(a) and Fig. 5(b) show the hardware area and BER comparison between DB VNLE and DB NN-
NLEs. The MTL-trained small DB NN-NLE achieves similar BER but has about 71% area reduction compared
with DB VNLE. The MTL-trained large DB NN-NLE requires similar area as DB VNLE but achieves lower BER.

It is notable that the MTL-trained DB NN-NLEs achieves similar BER compared with the DB NN-NLEs trained
for each wavelength individually, as shown in Fig. 5(c) and Fig. 5(d). However, the MTL-trained small and large
DB NN-NLE achieves 63% and 67% reduction in hardware area respectively compared with separate-trained
counterparts according to Table 1, because shared weights are used to simplify multipliers as described in Sec. 3.

Biases in our MTL training are still CD-specific. Fig. 6 shows the BER degradation when the biases in the DB
NN-NLE are also fixed, which confirms the importance of the flexible biases.

Table 1. Design and hardware area evaluation results of DB VNLE and DB NN-NLEs.

Notation* Design† Training Area (µm2)‡
Multipliers Adders Activation Total

DB VNLE [21, 9, 7] Separate 1.34E+05 1.42E+04 0.00E+00 1.48E+05
Small DB NN-NLE 21|11|7|1 MTL 1.48E+04 2.31E+04 4.98E+03 4.29E+04
Small DB NN-NLE 21|11|7|1 Separate 8.71E+04 2.31E+04 4.98E+03 1.15E+05
Large DB NN-NLE 41|23|11|1 MTL 4.61E+04 8.88E+04 9.41E+03 1.44E+05
Large DB NN-NLE 41|23|11|1 Separate 3.34E+05 8.88E+04 9.41E+03 4.32E+05
* VNLE and NN-NLEs applied in this paper are both trained on a DB target [3].
† The notation for DB VNLE indicates the number of memory taps of [1st , 2nd , 3rd ] order.
† The notation for DB NN-NLEs indicates the number of neurons in each layer. Each layer is fully-connected to the next one

layer. The activation function of 1st , 2nd , 3rd and 4th layer is none, tanh, tanh and linear, respectively (1st layer is the input).
‡ Area evaluation is conducted using Design Compiler [7] for logic synthesis using 45nm process technology.
‡ Activation functions are implemented using H-tanh, a low-cost variant of tanh [3].
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Fig. 5. BER comparison. (a) and (b) compare BER between DB VNLE and DB NN-NLEs. (c) and
(d) compare BER between MTL and separate learning for DB NN-NLEs.
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Fig. 6. BER comparison between shared biases and CD-specific biases.
6. Conclusions
We demonstrate an area-efficient neural network equalizer compensating CD at multiple wavelengths effectively.
Thanks to the use of fixed weights, the multipliers implementing the neural network are simplified significantly,
leading to a 71% reduction of hardware area in a representative VLSI implementation, while achieving a similar
BER compared with a Volterra equalizer.
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