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Abstract: Analog in-memory computing reduces power consumption sacrificing compu-
tational accuracy. We implement multiplication-accumulation in resistive RAM accounting
for non-idealities (variations, quantization, ADC noise). The floating-point performance is
recovered while minimizing power consumption in offline 64-QAM experiments. © 2022
The Author(s)

1. Introduction
Nonlinear equalization and demapping are instrumental in high-speed optical communications to compensate
transmission impairments. Recently, neural networks (NNs) are proposed to implement equalization and soft
demapping of received symbols [5, 7, 9, 13]. NNs are suitable to implement high-speed processing in optical
communications due to parallelization and the availability of large amount of training data.

However, digital implementations of NNs are power-hungry due to the huge number of multiply-accumulate
(MAC) operations and memory accesses. Analog in-memory computing (IMC) based on emerging devices, e.g.,
resistive RAMs (RRAM), is introduced [14] to tackle such challenges. In IMC accelerators, the weights of NNs
are represented by the conductances of RRAM cells. MAC operations are realized by Ohm’s and Kirchhoff’s laws,
so that a high computation and energy efficiency are achieved. IMC is reported to achieve a 17-time higher energy
efficiency than digital implementation [10]. However, IMC platforms suffer from hardware (HW) non-idealities,
namely weight variations, coarse weight quantization, and ADC noise.

Previous work addresses the impact of weight deviations by training approaches. In [4], NN soft-demappers
are trained under an optimized Lipschitz-constant constraint to prevent error amplification through the layers.
However, such approach does not take into account the low-level RRAM architecture.

In this work, we integrate the Lipschitz-method into a HW-aware training framework. We 1⃝combine the Lip-
schitz constraints with quantization aware-training to consider HW implementation (variations, weight/activation
quantization, ADC noise), 2⃝optimize weight/activation quantization by exhaustive search to minimize the bit
width and study quantization effects on robustness and power, 3⃝consider different splitting approaches for repre-
sentations of weights into more than one RRAM cell.

The remainder of the paper is structured as follows: In Sec. 2 and 3, we state our system model and methodology,
respectively, and in Sec. 4, we discuss the experimental setup and results.
2. System model and problem statement
Fig. 1(a) shows a crossbar architecture [11] able to represent positive and negative weights and shows HW non-
idealities in an IMC accelerator. The first HW non-ideality is the deviation of conductance values written to RRAM
cells. Physical parameter variations and errors of RRAM cells [12] cause the programmed conductance to deviate
from the nominal value. Consequently, the feature maps at the output of the layers become erroneous. The most
used model to describe weight deviations is the log-normal model [3] shown in Fig. 1(a), where wnominal is the
nominal value of a trained weight, and θ is an independent normally distributed random variable with standard
deviation σ . The second HW non-ideality is the limited number of usable conductance levels in a RRAM cell
which dictates the max number of bits stored in one cell, usually to 6-7 bits at most [10]. Furthermore, the resistor
noise and “kT/C” of the ADC converting the result of an analog MAC to digital domain cause a code-transition
error expressed as input-referred noise [8]. The ADC noise is modeled as a Gaussian noise added to the input of
an ideal ADC. The standard deviation σADC in a properly dimensioned systems is in the range of 0.5 LSBs [6].

Besides, the quantization setting of each layer’s output dictates the ADC size. ADC power scales exponentially
with the resolution [2] and represents around 50% of the total power of IMC accelerators [14].

As a problem demonstration, we consider the NN soft-demapper in [13]. The output layer has m neurons where
m is the number of bits per real dimension, i.e., m = 3 for 64-QAM. The achievable rate per real dimension is
calculated [1] as in Fig.1(b), where n is the number of training symbols. li j and bi j are the j-th soft bit in the NN
output and the true output for the i-th training symbol, respectively. The sign of li j defines the hard decision and
the magnitude defines the confidence. Activations and weights were quantized to 4 bits, i.e. the A4W4 format is
used. The model is tested under different weight variation levels represented on the x-axis, and 2 different ADC
noise levels of 0.5 LSB and 1 LSB. The dataset used is obtained with the experimental setup in Fig. 2. 250 NN
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Fig. 1. IMC HW non-idealities and impact on performance of a soft-demapper architecture.

weights samples were simulated at each σ value. The solid lines represent the mean values and the ranges represent
the standard deviation of the bitrate. According to Fig. 1(b), the achievable rate degrades significantly even with
relatively small variations, which makes the NN demapper unusable in practice. At lower weight variations, the
degradation is determined by the ADC noise, whereas, the weight variations dominate the error at higher values.

3. Methodology
3.1. Quantization-aware Lipschitz constrained training
Lipschitz-constrained training of soft demapper is presented in [4] to increase robustness against weight variations.
The Lipschitz constant determines how an error at the input of a NN layer is magnified through the layer. The error
magnification in a layer is suppressed by constraining the Lipschitz constant. The Lipschitz constant of each layer
is upper bounded by the spectral norm of the weight matrix as follows.

sup

(
|w · (x1 −x2)|p

|x1 −x2|p

)
=∥ w ∥p≤ k, φ(wi,ki) =

1

max(1, ∥wi∥2
ki

)
wi (1)

where x1,x2 are the nominal input to a layer, and the input affected by deviations in previous layers, respectively.
Equation (1) guarantees the L2 norm of wi does not exceed ki. The value ki for each layer is optimized numerically.

However, in its original formulation, the Lipschitz constraints do not consider the limited number of bits which
can be written to one RRAM cell [10]. We address this by combining Lipschitz constraining with quantization
aware training. During the start of the training, quantization is represented through soft tanh functions. As the
training proceeds, the softness is reduced moving towards hard quantization at the end of the training. The soft
quantization during training allows gradient backpropagation which is not possible in case of hard quantization.
3.2. Optimized quantization configuration
The quantization affects the robustness against HW non-idealities and the HW complexity as previously discussed.
Accordingly, the quantization settings need to be optimized with the Lipschitz constraints. The search is performed
by a greedy algorithm. The best Lipschitz constraint is determined for each layer by particle swarm optimization
(PSO). Next, an exhaustive search is executed for the quantization settings allowing weight quantization from 1 to
8 bits and activations quantization from 1 to 4, and 8 bits. Each combination is evaluated with respect to robustness
according to [4], besides, the total ADC and DAC power is evaluated based on UMC 90nm technology as in [2].
3.3. Optimized weight representation
Different weight mappings to RRAM cells are explored. As shown in Fig. 1(c), the first approach is the multilevel
mapping which maps a N-bit weight to one cell. In this case, the cell has to have 2N conductance states. The
second approach is the binary representation which splits each N-bit weight to N cells. Each cell stores one bit
of the weight so only 2 conductance states Gmax,Gmin are utilized. The weighted sum of the individual currents
is obtained in the analog domain. The individual currents are amplified by gains representing the significance of
each column in the weighted sum. The third mapping follows a slicing scheme in which each RRAM cell holds
M bits. The number of cells needed for a weight is N/M and the cell should have 2M conductance states. The
weighted summation is obtained similarly to the binary case but with different gains depending on M. The last
representation is the irregular slicing in which each RRAM cell holds a different number of bits such that the most
significant bits are distributed over more cells, while the least significant bits are stacked in fewer cells.
4. Experimental results & discussion
The NN demapper architecture in [13] is trained with quantization-aware Lipschitz constraints considering HW
non-idealities and tested at different non-ideality levels regarding weight variations, quantization, and ADC noise.
The NN weights were sampled 250 times according to the variation model. For each sample, the achievable rate
was evaluated as in Fig. 1(b). The ADC noise is modeled as described previously in [8].

M1F.3 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



ECL DP-IQM

Drivers

AWGTx-DSP

EDFA

4× 20km

G.652

EDFA 90◦ Hybrid

Photodiodes

ECL

Oscilloscope CD 7→ CFO 7→ MIMO 7→ TR&CPE
Rx-DSP

Dataset

Fig. 2. An experimental coherent single carrier transmission; 80km G.652 fiber link; optimal launch power: 6.6 dBm. 80GBd DP-64QAM
signal; gross data rate: 960Gb/s; FEC overhead: 15%; training sequences overhead: 3.47%; net bit rate: 800Gb/s; At the transmitter, a constant
amplitude zero auto-correlation (CAZAC) training sequence for framing, carrier frequency offset and channel estimation; four 60GHz 3dB-
bandwidth amplifiers for the electrical signals of the arbitrary waveform generator (AWG); two tunable 100 kHz external cavity lasers (ECLs)
are used at the transmitter and receiver; a booster EDFA amplifies the optically modulated signal; The receiver: optical 90◦-hybrid and four
100GHz balanced photodiodes; an oscilloscope with 256GSa/s and 110GHz 3dB-bandwidth digitizes the electrical signals.
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Fig. 3. Quantization search results and total ADC, DAC power for different weight representations and achievable rate at
different ADC noise and weight variation level.

The start for the quantization search is 8-bit activations and 8-bit weights (A8W8). The optimized quantization
setting returned from the search is A4W4. The performance comparison with the starting point A8W8 is shown in
Fig. 3(a) top. As shown, A4W4 maintains the robustness of A8W8, while satisfying the RRAM cell conductance
states limit and reducing the total ADC and DAC power by 86% for multilevel mapping.

The considered mappings of the 4-bit weights among cells are: binary, regular slicing with M = 2, and irregular
slicing with one cell holding the MSB and one cell holding the 3 LSBs. The binary representation has the highest
HW overhead because each weight is represented with 4 cells. Regular and irregular slicing would result in the
same overhead. Fig. 3(a) bottom shows comparison of the total ADC and DAC power consumption of the different
mappings of A4W4 and A8W8 mutlilevel. Fig. 3(b),(c), and (d) show the bitrate for different weight representa-
tions at different weight variations along the x-axis, and different ADC noise levels in the different subfigures. We
tested weight variations up to σ = 0.5. This variation setting is already very large for RRAM cells [3]. The tested
ADC noise levels σADC are 0, 0.5, and 1 LSB. The line labeled as ideal denotes the performance of the software
floating point double precision NN. The experiments show that, as expected, the binary representation achieves
the highest robustness as each cell utilizes only two levels. However, this comes at the cost of a larger crossbar
size. A good balance is shown in the performance of regular and irregular slicing as their performance is still close
to the binary mapping especially with the typical ADC noise levels of 0.5 LSB [6]. Experiments demonstrate that
the achieved bit rate can be recovered from as low as 1.4 to 2.78, 2.75, 2.73, or 2.43 bits per channel use depending
on the used weight representation for a 64-QAM NN demapper.
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