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Abstract: We demonstrate that position prediction is feasible in industrial applications
with visible light communication (VLC), using artificial intelligence. Accordingly, a long
short-term memory neural network is suggested, after experimental demonstrations of the
optimized VLC systems. © 2022 The Author(s)

1. Introduction

Optimization theory is widely used to solve signal processing problems in the physical layer of optical com-
munication systems [1]. Nonetheless, there are practical problems in which artificial intelligence (AI) based on
machine learning (ML) can play important roles due to a lack of appropriate system models [2]. Recently, several
research groups provided insights into the potential of ML in visible light communication (VLC) systems [3–5].
VLC describes optical wireless communications in which light emitting diodes (LEDs) are implemented for mo-
bile communications. This technology is useful in industrial applications where additional spectrum is needed,
and it can be integrated with 5G to offload a significant amount of ultra-reliable and low-latency traffic to the
optical domain [6]. The potential of ML algorithms can be exploited in VLC to enhance system performance, to
mitigate nonlinear effects, to compensate jitter, to identify modulation format, and to estimate phase deviation,
among others [7]. In this paper, we highlight the potential of a long short-term memory (LSTM) neural network in
position prediction of VLC systems with optimized parameters in indoor industrial applications. The LSTM-based
AI procedure takes into account Pareto fronts obtained after multi-objective optimization in a VLC appropriate
numerical model, we thoughtfully denominated Digital Twin (DT) after validation with experimental results.

2. VLC Measurement Setup and Its Virtual Object

Fig. 1(a) depicts the measurement setup used to evaluate the performance of the different VLC scenarios obtained
by varying the transmission distances. The standard 5 MHz new radio (NR) analog signals available at the arbitrary
function generator (AFG) output were amplified and superimposed onto a bias current (Ibias). The output of the
Bias-Tee was directly supplied to a commercial LumiLED white LED. After propagation through the line-of-sight
(LOS) channels, supported by bi-convex lenses, the VLC signals were detected by a HAMAMATSU photodiode
(PD) before analog-to-digital conversion by a mixed domain oscilloscope (MDO) and offline signal processing.
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Fig. 1. (a) Measurement setup and (b) performance comparison with its virtual object (DT).

To establish a logical copy (a.k.a., virtual object) of the setup (physical object) we conducted experiments
with the VLC scenarios in a linear regime, i.e., disregarding nonlinear effects, by considering the 5G NR sig-
nals (BW = 5 MHz) centered at fc = 7.5 MHz with Ibias = 500 mA and optical modulation index OMI =
(Imax− Ibias)/Ibias = 0.267, for Imax the maximum amplitude of the LED current. Moreover, with the error vector
magnitude (EVM) measured at each distance, we estimated the system signal-to-noise ratios (SNRs) assuming that
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SNR≈ 1
EVM2 . Thereafter, we performed simulations with numerical models in which the impact of the transmis-

sion distances was included according to the estimated SNRs. Fig.1(b) show performance comparisons between
the experimental and the simulation results. As shown in Fig. 1(b), almost all measured EVMs are located in the
95.45 % confidential interval (CI) of the simulation fit curve. This allowed the ”timid” Digital Twin denomination.

3. Multi-Objective System Optimization and Parameters Forecasting of Predicted Position via LSTM

We implemented a hybrid multi-objective optimization (HMO) procedure based on the multi-objective Grey Wolf
optimizer (MOGWO) and the non-sorting genetic algorithm III (NSGA3) to optimize the parameters of the links
ranging from 80 to 400 cm. Table 1 shows that the objectives were to minimize transmitted power (PT ) and guard
band (BG) aiming at power and spectral efficiencies respectively, without important performance penalties [see
the EVM measurements shown in Fig. 2(c)]. It is worth mentioning that, to maintain performance, reductions in
Ibias conduct to increases in OMI, as well as in BG due to intermodulation distortions (IMD) [1]. The polarization
current was limited to 2000 mA to limit the impact of the nonlinearities introduced by the LED.

Table 1. Problem formulation. xT (n) represents the 5G NR signals and d the link distance.

Min. PT = 1
N ∑

N
n=1 |xT (n)|2 and Min. BG

BW
, s.t.

|1−|EV M(d)
SNR(d) ||< 10% 0.1≤ OMI≤ 1 50≤ Ibias ≤ 2000 mA 0.1≤ BG

BW
≤ 0.5

Event forecasting is an important issue in the scenario depicted in Fig. 3(a), in which two robots move on a
belt in a straight line. Predictions of robots’ position can be accomplished to enhance the performance of the VLC
LOS links with parameters optimized by the HMO. Here, we suggested the LSTM artificial neural network (ANN)
to predict future positions and to forecast the VLC parameters of the positions, taking into account the Pareto
fonts provided by the HMO. The interpolation skill of ANNs allowed parameter estimation of link distances that
were not optimized and the memorization of past events, that characterizes LSTMs, contributed to the prediction
process. Thus, the last (dk−1) and the current (dk) positions of a robot were the inputs of the LSTM and its outputs
were BG/BW , Ibias and OMI of the predicted position. Considering that our VLC links cover distances between 80
and 400 cm with a step of 10 cm, the column normalized dataset was generated considering all the combination
between dk−1, dk as well as BG/BW , Ibias and OMI of dk+1, in each step. The training output dataset was extracted
from the knee-point of each Pareto front provided by the HMO. For example, if dk−1 = 80 cm, dk = 90 cm,
dk+1 = 100 cm and (BG/BW , Ibias,OMI) = (a,b,c) for dk+1 = 100 cm, a sample of the dataset can be obtained by
the input (dk−1,dk) = (80,90) and the output (BG/BW , Ibias,OMI) = (a,b,c). It is noteworthy that the robots only
move to neighboring distances of the considered steps and they update their current positions via an uplink which
is out of the scope of this work. Fig. 3(b) shows the LSTM architecture composed by four hidden layers with 512,
1028, 256 and 64 units, respectively, and by an output layer with 3 units. Hyperbolic tangent and rectified linear
unit are the activation functions of the hidden and the output layers, respectively. The LSTM was trained using the
Adam optimization algorithm, considering 2048 epochs with a batch size equal to 8 samples.

4. Results and Discussion

The first Pareto front, as well as boxplots with the range of the optimized variables, provided by the HMO at a
link of 280 cm are shown in Fig. 2(a). As expected, lower guard bands demand higher transmission powers [1].
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Fig. 2. (a) HMO Pareto front at a link of 280 cm. The insets show boxplots of Ibias and OMI. (b) Ibias
and BG/BW versus link distances. (c) Validation of the optimization procedure with experiments.
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Fig. 2(b) shows the bias currents provided by the optimization procedure at the knee-points of each Pareto front.
The optimized Ibias over the increasing transmission distance also increases to overcome the signal attenuation
and the noise effects. This power growth benefits the guard band minimization and the relative short variation
in the OMI, as illustrated by the BG/BW values shown in Fig. 2(b) and the OMI boxplot shown inset Fig. 2(a),
respectively. The EVM comparisons shown in Fig. 2(c) demonstrate that, in general, the VLC link performances
were maintained after the adoption of the HMO procedure. The performance enhancement registered at 400 cm
was guaranteed by the use of a larger OMI determined by the HMO.

As aforementioned, the Pareto fronts returned by the HMO were used in the forecasting described in Section
3. Therefore, the original dataset was divided in 15% for test and 85% for training. Analyzing training losses, the
model checkpoint returned an RMSE of 5.10% after training and 7.68% after test. The convergent loss curves for
the train and test dataset shown in Fig. 3(c) demonstrate that overfitting did not occur. The success of the proposed
LSTM was validated by the RMSE = 5.10% obtained with the training dataset, as well as by the EVM errors
less than 6% shown in Fig. 3(c). These errors were calculated with the system performances obtained with the
parameters extracted from the Pareto fronts and the ones returned by the LSTM.
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Fig. 3. (a) Industrial scenario with two robots moving on a belt in a straight line. (b) LSTM architec-
ture used to predict positions and the VLC parameters of the positions. (c) EVM error at each link
distance and RMSEs obtained with training and test.

5. Conclusion

Artificial intelligence based on LSTM neural network was proposed to forecast position and optimal parameteri-
zation of VLC systems in industrial scenarios. Our numerical and experimental results show that multi-objective
optimization is mandatory for robust operation in scenarios where transmission power and guard band are mini-
mized aiming at energy and spectral efficiencies, respectively. In low SNR scenarios that represent relative long
link distances, we observed that AI can be useful to achieve performance enhancements.
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