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Abstract: Recently, a nonlinear Fourier transform-based Kerr-nonlinearity identification
algorithm was demonstrated for a 1000 km NZDSF link with accuracy of 75%. Here, we
demonstrate an accuracy of 99% over 1600 km SSMF. Reasons for improved accuracy are
discussed. © 2022 The Author(s)

1. Introduction

The nonlinear Kerr effect is one of the major effects that limit the achievable data rates in optical communica-
tion. While it can be compensated, for example through digital back-propagation [1], nonlinearity compensation
requires accurate knowledge of the Kerr-nonlinearity coefficient of the fiber. Often, values from the data sheets of
the installed fibers are used. However, the actual Kerr-nonlinearity may be different due to incomplete knowledge
of the link or splice losses during installation [2, p.191]. To identify the Kerr-nonlinearity in an installed sin-
gle mode fiber, commonly the link is simulated with different Kerr coefficients using split-step Fourier methods
(SSFM); the coefficient that fits best is kept [3, 4]. However, the number of steps required for the SSFM increases
with the link length, and also time- and phase-offsets have to be compensated for the equalization process.

To overcome these drawbacks, an identification method based on matching of the discrete spectra (solitonic
components) of the nonlinear Fourier transform (NFT) of input-output data was proposed and validated through
simulations in [5]. For a noiseless and lossless link, the solitonic components within the transmitted signal co-
incide exactly with the solitonic components in the received signal, but only when the correct Kerr-nonlinearity
coefficient was used for the normalization step in the nonlinear Fourier transform. The nonlinearity coefficient may
thus be determined as the value at which the solitonic components at the transmitter and receiver match optimally.
No propagation of the signal is required. Furthermore, time- and phase-offsets do not influence the identification.

First experimental results of the NFT-based nonlinearity identification applied on a non-zero dispersion shifted
fiber (NZDSF) in [6] reported an identified nonlinearity coefficient up to 25% higher than the benchmark value
obtained using a split-step Fourier method. In this paper, we present experimental results of the NFT-based identi-
fication algorithm applied on a standard single-mode fiber (SSMF) that identifies the Kerr-nonlinearity coefficient
within 1% of the benchmark value. The pre-processing for the NFT-based algorithm furthermore does not con-
tain any time- or phase-shift compensation in his paper, which experimentally verifies for the first time that the
NFT-based method does not require these steps.

2. Nonlinear Fourier transform and identification algorithm

The propagation of a signal through a span of single-mode fiber with anomalous dispersion can be described
by a lossy nonlinear Schrödinger equation (NLSE) [2], Al =−i β2

2 Aττ + iγ|A|2A− α

2 A, where A(τ, l) is the signal
envelope as a function of time τ and distance l. Here, β2 denotes the second-order dispersion coefficient, γ the Kerr-
nonlinearity coefficient, and subscripts partial derivatives. At the end of each span the signal power is amplified
by an EDFA to a fixed power level. The NFT-based method requires a lossless NLSE. Therefore, we apply the
path-average approximation [7]:

Q = Aeαl/2, γ1 =
1

Lspan

∫ Lspan

0
γe−αl dl = γ

1− e−αLspan

αLspan
, ⇒ Ql ≈−i

β2

2
Qττ + iγ1|Q|2Q, (1)
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where Q(τ, l) is the loss-compensated amplitude and γ1 the path-averaged Kerr-nonlinearity coefficient. The NFT
is typically computed from the normalized and dimensionless NLSE, so we apply the following normalization [8]:

t =
1
T0

τ, q = T0
√
|γ1/β2|︸ ︷︷ ︸

cq

Q, z =
1

T 2
0
(−β2/2)︸ ︷︷ ︸

cz

l ⇒ qz = iqtt +2i|q|2q. (2)

Note that the amplitude normalization cq and space normalization cz are fixed by β2 and γ1, but that the time
normalization T0 is a free parameter (similar to the linear Fourier transform, it simply re-scales the spectrum). As
the choice of T0 does not influence any further analysis, we set T0 = 1 s.

The NFT of a normalized signal q(t) with vanishing boundary conditions is defined as follows [1]:

d
dt

[
φ1(t,λ )
φ2(t,λ )

]
=

[
−iλ q(t)
−q∗(t) iλ

][
φ1(t,λ )
φ2(t,λ )

]
,

[
e−iλ t

0

]
t→−∞←−

[
φ1(t,λ )
φ2(t,λ )

]
t→+∞−→

[
a(λ )e−iλ t

b(λ )e+iλ t

]
. (3)

The NFT spectrum consists of two parts: the discrete spectrum {(λk,b(λk)) : a(λk) = 0, ℑ(λk) > 0} represents
solitonic components; the continuous spectrum {b(ξ ) : ξ ∈ R} represents dispersive components. Assuming that
the signal propagates exactly according to the normalized NLSE, both the eigenvalues λk and the amplitudes of the
continuous spectrum |b(ξ )| remain constant [1]. We only consider the eigenvalues λk of the discrete spectrum in
this paper, as we observed that the continuous spectrum contains only a small part (< 5%) of the energy for the used
signals. We finally recall that the eigenvalues are invariant under time- and phase-offsets of the signal [8, p.4319].

The NFT-based identification algorithm is based on [5] and has the following steps: 1) a cq is selected from
a grid for the normalization; 2) the eigenvalues of the transmitted and received signal are determined from the
normalized signals; 3) the matching error E is determined as follows:

E = min
m(k)

∑k Ekm(k)

∑k ℑ
(
λ in

k

)
+∑m ℑ(λ out

m )
, with Ekm = min

(
|λ out

m −λ
in
k |,ℑ(λ in

k +λ
out
m )
)
, (4)

where m(k) denotes the perfect matching which connects input eigenvalue λ in
k to output eigenvalue λ out

m , and
Ekm the cost of connecting these eigenvalues. In case the input and output spectra have different numbers of
eigenvalues, unmatched eigenvalues of the larger spectrum are assigned a maximum cost: Ek− = ℑ

(
λ in

k

)
, E−m =

ℑ(λ out
m ). An exemplary matching at optimal cq of one of the used signals is shown in Fig. 2a. The steps 1)-3)

are repeated for every grid point. The cq with the lowest error is then used to recover γ using Eqs. 1 and 2. This
procedure is performed for each signal block, and all estimates for γ are averaged for a final estimate.

3. Experimental results

The used setup is shown in Fig. 1. One hundred blocks of 128 QPSK symbols with a symbol rate of 10 GBd
(burst length 12.8 ns) were transmitted with guard intervals of 3.2 ns between consecutive blocks. A raised cosine
filter with roll-off factor 0.5 was used for pulse shaping. The digital signal was pre-compensated for the measured
frequency response of the back-to-back transceiver setup. Digital to analogue conversion was done using an 88
GS/s arbitrary waveform generator (AWG). The analogue signal was converted into the optical domain at 1550 nm
carrier wavelength using an I/Q modulator and a laser with <100 kHz linewidth. The optical signal was amplified
to 2 dBm launch power before every fiber span, and circulated 8 times through a loop of 4 spans of 50 km OFS
AllWave SMF for a total of 1600 km. The reference fiber coefficients for α and β2 were taken from the data sheet.
However, γ was not provided, so we used a typical value from the literature [9, p.157]: β ref

2 = −21.2 fs2

m (D =

16.6 ps
nm·km ),α ref = 0.19 dB

km , γ ref = 1.26 1
Wkm . After polarization de-rotation, the signal was received using a <10

kHz linewidth laser and an 80 GS/s coherent receiver. Finally, the signal was post-processed as indicated in Fig. 1.
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Fig. 1: The used setup with exact fiber lengths, positions of optical filters, and applied signal-processing.
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Fig. 2: (a) The matching of detected eigenvalues at transmitter and receiver at optimal normalization of a single
signal block. (b) The average discrete spectrum error over 100 individual blocks, compared to the SSFM-error of
the full 100-block signal. (c) The NFT-based estimates of γ for each of the 100 blocks of input-output data, along
with the mean of the NFT-based estimates and the benchmark value.

To convert cq from the NFT-based method to γ with Eqs. 1 and 2, we require β2 precisely. We identified it by
comparing the phase shifts in the linear Fourier spectrum of the full signal of 100 blocks at the transmitter and
receiver, and found β ID

2 = −20.6 fs2

m (D = 16.2 ps
nm·km ). We identified γ using the NFT method and the benchmark

using the SSFM as described in the previous section. For both the SSFM method and for the conversion from cq
to γ in the NFT method, we used β2 = β ID

2 , α = α ref and the mean span length.
The results are presented in Figs. 2b and 2c. The mean of the identified values for γNFT (= 1.207 1

Wkm ) from
the NFT-based method is within 1% of the benchmark method (γbenchmark = 1.1210 1

Wkm ), which are both slightly
lower than the reference value (γ ref = 1.26 1

Wkm ). In contrast to the 25% difference in [6], the NFT-based value for
γ is nearly identical to the benchmark method. While the fiber in [6] was different, we think that the difference
is likely reduced because we hand-tuned the Mach-Zehnder modulators to prevent non-zero means in the optical
offset and remeasured the frequency response of the transceiver that is used for linear pre-compensation. Finally,
the method used for the benchmark value in [6] contained a subtle conceptual mistake in the phase-offset correction
step, that biased the identified γ towards the reference value.

4. Conclusion

We validated the effectiveness of nonlinear Fourier transform-based Kerr-nonlinearity identification on experi-
mental fiber-optical transmission data, without employing time- and phase-offset compensation. The identified
nonlinearity coefficient obtained with the nonlinear Fourier transform was within 1% of the benchmark value us-
ing the split-step Fourier method. Future research will investigate speeding up the NFT-based method, for example
by identifying and matching only the highest few eigenvalues.
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