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Abstract: We demonstrate a pulse shaping filter enabled by machine learning for spectral
superchannels. In contrast to a 1% roll-off root-raised cosine filter, our learned filter reduces
the adaptive equalizer length by 47% for the same spectral efficiency.
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1. Introduction

Spectral superchannels, which combine wavelength division multiplexing (WDM) with narrow guard-bands and
high-order modulation formats [1], have attracted considerable attention due to their potential to achieve high
spectral efficiency (SE) at bandwidths larger than the electronic transceiver bandwidth. One key factor to improve
SE is minimizing the spectral gap between adjacent channels and eliminating inter-channel interference (ICI).
Narrow spacing relies on low roll-off factors, which is difficult to achieve in practice due to finite filter memory
and hardware constraints [2]. Various experiments have been proposed to optimize the roll-off factors of the root-
raised cosine (RRC) filter to reduce ICI in a WDM system [3–5].

Recently, machine learning (ML) techniques using neural networks (NNs) have been proposed to mitigate
transmitter [6, 7] and transmission impairments [8] in fiber communication systems. End-to-end learning based
autoencoder (AE) has been proposed to optimize transceivers jointly [9]. However, the NNs proposed in [6, 7]
were learned in a single wavelength system by ignoring the ICI, and may not suit narrowly-spaced superchannel
systems. Our method in [10] used an AE to perform a joint optimization of the constellation, pulse shaping (PS)
filter and modulator nonlinearity mitigation in a simulated superchannel system. In contrast to RRC-filter-shaped
superchannels which can be sub-optimum, systems shaped with a ML filter can optimize the signal spectra and
then further minimize the ICI.

In this work, we experimentally verify the concepts from [10], taking advantage of the learned PS filter in a
superchannel system. We apply a 64QAM signal shaped with the RRC and learned filter to a comb-based super-
channel system with three carriers spaced at 25GHz. For the same DSP complexity, the learned filter improves the
spectral efficiency by 2.3% and 0.8% compared with a 10% and 1% roll-off RRC filter, respectively. Surprisingly,
in contrast to a 1% roll-off RRC filter, the proposed method can reduce the adaptive equalizer length by 47% at
SE 5.684 bits/s/Hz, enabling lower DSP complexity and power consumption.

2. Pulse shaping filter training

The training is finished in simulated model as shown in Fig. 1 (a). The system consists of three 64QAM wavelength
channels, where the PS filter is implemented by an NN as in [10]. In each channel, the baseband symbols xxx ∈
CN are first upsampled with rate R and then convolved with the trainable PS filter, after which a digital pre-
distortion block (i.e., arcsine function and clipping) is employed to compensate for the hardware imperfections.
Then, the pre-distorted signals sss ∈ CNR are fed to a digital-to-analog converter with 6 effective-number-of-bits
and amplified by a linear power amplifier to drive the IQ-modulator. The modulated signals of the 3 sub-channels
are then combined to form the superchannel. The channel model under consideration is the optical-back-to-back
channel, and therefore only AWGN noise is simulated as the booster amplifier noise. At the receiver, the channel
observations are first passed through a low-pass filter and then convolved with a matched filter (MF). Instead
of employing a trainable NN as MF, we apply a RRC filter to enable a faster convergence for the PS filter NN.
The resulting signals uuu ∈ CNR are then downsampled with rate R to get the recovered baseband symbols yyy ∈ CN .
Training is performed by minimizing the mean-squared-error (MSE) loss, i.e., LMSE(θθθ) =

1
N ∑

N
k=1 |yk− xk|2, of

the center channel by employing the commonly used Adam optimizer [11]. The length of the NN-based PS filter
is 201, while 5000 iterations are used for each training.

3. Experimental setup

The comb-based superchannel system is presented in Fig. 1 (b). The electro-optic frequency comb (EO-comb)
consists of two cascaded phase modulators and an intensity modulator driven by a 25 GHz RF clock. An optical
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Fig. 1: (a) Block diagram of the training model; (b) Experimental setup of the superchannel system. NN: neural network; DPD:
digital pre-distortion; DAC: digital-to-analog converter; PA: power amplifier; LPF: low-pass filter; MF: matched filter; ECL:
external cavity laser; EO-comb: electro-optic frequency comb; WSS: wavelength-selective switch; OI: optical interleaver; PBS:
polarization beam splitter; VOA: variable optical attenuator; BPF: band-pass filter.

carrier at 1550.12 nm is fed to the EO-comb to generate 25 GHz equally-spaced comb lines. We amplify the comb
output using two erbium-doped fiber amplifiers (EDFAs). The wavelength selective switch filters out the three
central carriers (1549.92 nm, 1550.12 nm, and 1550.32 nm) and flattens the comb. A 25 GHz optical interleaver
(OI) is then used to separate the carriers into the center and side channels. By using an arbitrary waveform gen-
erator, we modulate each carrier with a 64QAM signal pulse-shaped with the RRC (10% or 1% roll-off) or the
learned filter. Independent data is modulated on each channel. We vary the symbol rate from 23 GBaud to 25
Gbaud to adjust the effective guard-bands of the superchannel. Polarization multiplexing is employed by using the
split-delay-combine method [12] for each channel. Signal decorrelation between the side channels is induced by
another pair of OIs. The modulated signals are then combined to generate the superchannel before being amplified
by a booster followed by a 0.25 nm band-pass filter and a variable optical attenuator to control the received power.

The filtered signal and local oscillator line are combined in a coherent receiver and then sampled by a 80 GS/s
real-time oscilloscope before being processed by offline DSP, which performs low-pass filtering, resampling,
front-end imbalance compensation, carrier recovery and dynamic equalization [13].

4. Results

During the training, two sets of ML filters (ML-0.1 and ML-0.01) are learned, where 0.1 and 0.01 indicates the
roll-off of the RRC matched filter at the receiver. The ML filter operated at each symbol rate is trained under the
targeted channel spacing ratio, defined by the ratio between carrier spacing (25 GHz) and symbol rate.

The bit error rate (BER) and SE for a superchannel shaped with a 10% roll-off RRC filter is shown in Fig. 2 (a)
and (b), respectively. The performance of the ML-0.1 and ML-0.01 filters are evaluated. Compared to the ML-0.01
filters, the ML-0.1 filters perform better from 23 Gbaud to 25 Gbaud. Therefore we only show the performance
of the ML-0.1 filters, indicated by the red curve, in Fig. 2 (a)-(b) and Fig. 3. The frequency response of a learned
filter, targeted at the channel spacing ratio of 1.04 and the 10% roll-off RRC matched filter, is shown in Fig. 2 (c).
The learned filter has a narrower spectrum compared with the RRC filter and therefore reduces the ICI. We use
the single channel system shaped with RRC filter as a reference. The gap between the single and three channel
system is probably induced by the hardware imperfections and inter-channel crosstalk. A 45-tap equalizer trained
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Fig. 2: Comparison between ML-based filter and RRC filter with 10% roll-off. (a) BER versus symbol rate; (b) Spectral
efficiency versus symbol rate; (c) Frequency response of learned filter when the channel spacing ratio is 1.04 and the roll-off
factor of the matched filter is 10%. The frequency response of the 10% roll-off RRC filter is presented as a reference.
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Fig. 3: Comparison between ML-based filter and RRC filter with 1% roll-off. (a) BER versus symbol rate; (b) Spectral effi-
ciency versus symbol rate; (c) Spectral efficiency versus the equalizer length at the symbol rate of 24.6 Gbaud.

with adaptive step-size is applied to perform channel equalization. By employing the learned filter, we achieve
a 0.13 bits/s/Hz increase, corresponding to 2.3% improvement, in spectral efficiency. The optimum symbol rate
increases from 24 Gbaud to 24.6 Gbaud, further minimizing the spectral gap between adjacent channels.

The system performance for pulse shaping with a 1% roll-off RRC filter is illustrated in Fig. 3. We start from
using the same equalizer length (i.e., 45) to evaluate the system performance. As shown in Fig. 3 (b), the spectral
efficiency is improved from 5.64 bits/s/Hz (24.4 Gbaud, blue curve) to 5.68 bits/s/Hz (24.6 Gbaud, red curve),
resulting in a 0.8% performance increase. However, the SE of the RRC-filter-shaped superchannels is significantly
enhanced by optimizing the number of equalizer taps. As presented in Fig. 3 (c), we sweep the equalizer length at
24.6 Gbaud for SE optimization. The SE gap between the RRC and the learned filter decreases to 0.015 bits/s/Hz,
while the optimum number of taps is 105 and 65, respectively. Moreover, while the SE gain is minor, it is possible
to significantly reduce the equalizer length without penalty. For example, the required number of taps at SE 5.684
bits/s/Hz is reduced from 85 to 45, corresponding to a 47% reduction. For large number of taps (i.e., 145), the
performance of the equalizer is degraded due to suboptimal equalizer convergence. Nevertheless, the performance
of the equalizer is almost saturated at the equalizer length of 105. The black curve in Fig. 3 (a) and (b) indicates
the performance achieved by optimizing the equalizer length for each symbol rate. Currently the learned filter has
sub-optimum performance due to the difference between training model and experimental setup.

5. Conclusion

We experimentally demonstrated a pulse shaping filter enabled by machine learning in a comb-based superchannel
system. For the same DSP complexity, the proposed method improves the spectral efficiency by 2.3% and 0.8%
compared with a 10% and 1% roll-off RRC filter, respectively. More surprisingly, the ML-based pulse shaping
filter induces a 47% reduction in the required number of equalizer taps at SE 5.684 bits/s/Hz.
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