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Abstract: Low-complexity sparsely-connected multi-output neural networks are proposed for 

equalization in a 50-Gb/s 25-km PAM4 IM/DD system. Compared with traditional fully-

connected single-output counterparts, a gross complexity reduction of 60.4%/56.7% can be 

achieved with 2-layer FNN/C-FNN architecture. © 2022 The Author(s)  

 

1. Introduction 

The unprecedented popularity of data centers has led to an ever-increasing demand for short-reach optical 

interconnects. For short-reach applications, intensity-modulated directly-detected (IM/DD) systems are widely 

adopted due to the simple structure, low power consumption and low cost [1]. However, IM/DD systems suffer from 

nonlinear impairments owing to the mixture of chromatic dispersion and square-low direct detection [2]. The 

intrinsic nonlinear characteristics of low-cost lasers such as directly modulated lasers (DML) also significantly 

deteriorate the system performance [3,4]. A lot of digital signal processing (DSP) methods have been proposed to 

settle the nonlinear equalization issue, of which various neural network (NN)-based equalizers [5-7] attract the most 

attention since they can achieve better performance than traditional equalization schemes. However, NNs are usually 

computationally intensive, which go against the low power consumption trend of optical interconnects and hinder 

their practical implementation in real-time. Therefore, it is highly desirable to reduce the network complexity while 

upholding the system performance. 

It has been proved that a proportion of weights inherent in NN-based nonlinear equalizers are redundant, and 

pruning can be adopted to cut off the insignificant weights [8,9]. In this paper, we propose multi-symbol 

equalization [10] combined with weight pruning to reduce NN complexity as much as possible. By increasing the 

number of outputs, the NN weights are shared for parallel symbol prediction, thereby reduce the number of 

multiplications required per received symbol [10]. Although multi-symbol equalization has already reduced 

computational complexity, we find there is still redundancy in specific weights, which make it possible for further 

complexity reduction. A DML based IM/DD experiment is demonstrated, which transmit 50-Gb/s pulse amplitude 

modulation (PAM)-4 signal over 25-km standard single mode fiber (SSMF) in C-band. Two different architectures 

of NNs, i.e., the simple feedforward NN (FNN) and cascade-FNN (C-FNN) [7], are selected for receiver-end 

equalization with the proposed multi-symbol prediction and pruning scheme. Compared with traditional fully-

connected single-output FNN and C-FNN, the proposed method helps achieve a gross complexity reduction of 

60.4% and 56.7% respectively, without degrading the original system bit-error-rate (BER) performance. The 

significant relief of complexity leads to only a few tens of multiplications per received symbol (57.0 for FNN and 

68.8 for C-FNN), making NNs feasible for real-time implementation. 

2.  Sparsely-connected multi-output FNN/C-FNN receiver and experimental setup 

 
Fig. 1. Experimental setup of a 50-Gb/s 25-km PAM4 IM/DD link and the schematic of FNN/C-FNN with reduced complexity. 
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Fig. 1 illustrates the experimental setup of a DML-based IM/DD link which transmit 50-Gb/s PAM4 signal over 25-

km SSMF. The schematic of Rx-end NN-based DSP with reduced complexity is also shown in the figure. At the 

transmitter side, the PAM4 signal is generated by a 92-GSa/s arbitrary waveform generator (AWG) with Tx DSP. 

The signal is then amplified by an electronic amplifier (EA) with 17-dB gain. A 16-GHz DML is used to convert the 

electrical signal into optical domain, and the optical signal is transmitted over 25-km SSMF. At the receiver side, a 

variable optical attenuator (VOA) is first employed to adjust the received optical power (ROP), and a 43-GHz 

photodetector (PD) is used to perform optical-electrical conversion. Finally, the received signal is captured by an 80-

GSa/s digital storage oscilloscope (DSO), followed by Rx DSP. 

Low-complexity FNN and C-FNN-based equalizers are proposed in Rx DSP to mitigate nonlinear system 

impairments. Compared with traditional NN-based equalizers, the computational complexity reduction approach is 

two-fold. First, the idea of multi-symbol prediction is adopted which produces multi-output NNs. In this way, part of 

the weights and biases can be shared when processing different symbols at the same time. Second, pruning 

technique gets involved to form a sparsely-connected NN structure. By identifying and cutting off insignificant 

weights, complexity can be further reduced. As shown in the figure, the number of NN input, hidden and output 

neurons is denoted by [0]n , [1]n , and [2]n  respectively. For the i-th layer (i=1,2), the weight matrix 
[ ]i

W  is a 
[ ] [ 1]i in n −  matrix consists of all the weight coefficients connected from the (i-1)-th layer to the i-th layer and the 

bias matrix 
[ ]i

b  is a 
[ ] 1in   vector includes all the biases of the i-th layer. The cascade structure of C-FNN is 

controlled by a [0]1 n   weight vector 
c

W . Assuming the 
[0]n  NN inputs are denoted by x , the 

[0]n  NN outputs are 

denoted by y , and the activation function of the i-th layer is denoted as [ ] ( )if  , the forward propagation step of NN, 

which is also the equalization process, can be expressed as 

( )[2] [2] [2]f= +y W h b .                                                                        (1) 

For FNN, we have [1] [1] [1]( )f= +h W x b , 
[2] [2]=W W , and for C-FNN, we have 

[1] [1] [1][( ( )) , ]T T Tf= +h W x b x , 
[2] [2]=[ , ]c

W W W . The complexity of FNN/C-FNN can be represented by the required number of multiplications per 

received symbol, which is denoted by mulN . Considering the fully-connected NN structure, we have 
[0] [1] [1] [2] [2]( ) /mulN n n n n n= +  for FNN and [0] [1] [1] [2] [0] [2] [2]( + ) /mulN n n n n n n n= +  for C-FNN, which also equals the 

number of connections per output of each NN. After weight pruning, the entries in the weight matrices lower than a 

pre-defined weight threshold are set as 0, which means that the number of connections can be proportionally 

removed, thereby offering a more efficient computation. The inputs of both FNN and C-FNN contain the currently 

received [2]n  symbols and the same number of past and post symbols, while the NN outputs correspond to the 

equalized [2]n  symbols. We also note that to maintain BER and ensure a fair comparison, the input length of multi-

output NNs should cover at least the same channel memory as that of single-output NNs for each output symbol. In 

other words, as [2]n  increases, [0]n  should also be increased by the same amount. For parameter settings of both 

NNs, tanh activation function is used in the hidden layer and a linear function is selected for the output layer. 20000 

symbols are randomly selected to train the FNN/C-FNN, while another 1.2 million symbols are used as testing data. 

3.  Results and discussions 

Before applying pruning, we first investigate on the effect of the number of NN outputs [2]n  and determine a proper 

selection [2]n  that has the lowest complexity. Fig. 2(a) depicts the mulN  threshold (lowest mulN  required to achieve 

the best BER performance) versus [2]n  for FNN/C-FNN when the ROP is set at -1 dBm. Note that for both single-

output FNN and C-FNN, at least 15 inputs and 9 hidden neurons are required for the best BER performance (around 
33.8 10− ), involving 144 and 159 multiplications respectively [10] which is shown by the black dashed line in Fig. 

2(a). It can be observed that as [2]n  increases, the minimum mulN  decreased at first, and then increases. For FNN, 

 
Fig. 2. (a) mulN  threshold versus [2]n  for single/multi-output FNN/C-FNN; (b) BER and mulN  versus weight threshold for FNN (9-output) and C-

FNN (6-output); (c) Pruning ratio of different types of weights in FNN (9-output) and C-FNN (6-output) versus weight threshold. 
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the optimal [2]n  is 9 ( [1]n =23, mulN =81.8) while for C-FNN, the best [2]n  is 6 ( [1]n =17, mulN =93.7). Fig. 2(b) 

shows the BER and mulN  versus weight threshold for the best multi-output NNs (9-output FNN and 6-output C-

FNN). As the weight threshold becomes larger, more weights are pruned, resulting in an increase of BER 

performance and a decrease of mulN  for both FNN and C-FNN. However, when pruning at a threshold of 0.02, the 

BER performance shows almost no difference compared with the fully-connected case, allowing a reduction of the 

number of connections without lowering BER. For the worst FNN case, the BER can still be lower than the 20% 

soft-decision forward error correction (SD-FEC) threshold even when the weight threshold is increased to 0.1, where 

only 25.9 multiplications is required. Fig. 2(c) present the pruning ratio of each weight matrix versus weight 

threshold. We can see that pruning mainly take place in the input-hidden layer weights 
[1]

W , while for the more 

important hidden-output layer connections and cascade connections, less weights can be pruned. 

The BER performance versus ROP under different pruning ratio of 9-output FNN and 6-output C-FNN are 

shown in Fig. 3(a) and 3(b) respectively. The pruning ratio or the complexity reduction ratio listed in the legend is 

calculated based on the weight thresholds selected in Fig. 2(b) and 2(c). Although [0]n , [1]n , and [2]n  selected for 

FNN/C-FNN are the minimum values required for the best BER, experimental results show that there is still room 

for weight pruning. Compared to the fully-connected multi-output NNs, about 30.3% and 26.5% pruning reduction 

can be achieved for FNN and C-FNN respectively, while still upholding the BER performance. If we further relax 

the BER requirement to SD-FEC threshold, more than half of the NN connections can be removed. In a nutshell, 

multi-symbol equalization and pruning can significantly reduce the complexity without degrading BER. Only 

57.0/68.8 multiplications per symbol is needed for FNN/C-FNN aided by the sparsely-connected multi-output 

structure, achieving a gross complexity reduction of 60.4%/56.7% compared with fully-connected single-output 

counterpart which requires 144/159 multiplications per symbol. 

4.  Conclusion 

Multi-symbol equalization and weight pruning has been proposed and validated with a 2-layer FNN/C-FNN 

architecture which jointly reduce the computational complexity required for nonlinear equalization in IM/DD links. 

Compared with traditional fully-connected single-output FNN/C-FNN, an overall complexity reduction of 

60.4%/56.7% is achieved in a 50-Gb/s 25-km PAM4 IM/DD system without degrading system BER performance. 
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Fig. 3. BER versus ROP under different pruning ratio using (a) FNN (9-output) and (b) C-FNN (6-output). 

  

W2A.26 OFC 2022 © Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision


