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Abstract: We demonstrate a universal optical vector convolutional accelerator operating at 11 

Tera-OPS, generating convolutions of images of 250,000 pixels with 8-bit resolution for 10 

kernels simultaneously. We use the same hardware to form a deep optical CNN with ten output 

neurons, achieving successful recognition of full 10 digits with 88% accuracy. Our approach is 

scalable and trainable for applications to unmanned vehicle and real-time video recognition. 

Convolutional neural networks (CNNs) can abstract the representations of input data in their raw form, and predict 

their properties with both unprecedented accuracy and greatly reduced parametric complexity [1, 2], and have been 

applied to computer vision, natural language processing and other areas [3]. Optical neural networks (ONNs) [4-10] 

are promising next-generation neuromorphic computers for ultra-high computing speeds enabled by the >10 THz wide 

telecom band. They avoid limitations of reading and storing data, known as the von Neumann bottleneck [11]. While 

Significant progress has been made in highly parallel, high-speed and trainable ONNs, processing large-scale data, 

needed for computer vision tasks, remains challenging because ONNs are fully connected structures with their input 

scale determined by hardware parallelism. This leads to tradeoffs in network scale and footprint. ONNs have not 

achieved the extreme computing speeds that analog photonics are capable of.  

Here, by interleaving wavelength, temporal, and spatial dimensions with an integrated Kerr microcomb, we 

demonstrate an optical convolution accelerator with a vector computing speed of 11.322 Tera-OPS/s (TOPS) and use 

it to process 250,000 pixel images with 10 convolution kernels at 3.8 TOPs [7]. Our convolution accelerator (CA) is 

dynamically reconfigurable and scalable, serving as both a CA front-end as well as an optically deep CNN with fully 

connected neurons, with the same hardware. We use the deep CNN to achieve recognition of the full ten handwritten 

digits (0-9) with an accuracy of 88%. Our accelerator is stand alone and universal — fully compatible with electrical 

and optical interfaces, as a universal ultrahigh bandwidth data compressing front end for neuromorphic hardware 

bringing massive-data machine learning for real-time ultrahigh bandwidth data within reach. 

Figure 1 shows the photonic matrix CA.  The input data vector X is encoded as the intensity of temporal symbols in a 

serial electrical waveform at a symbol rate 1/τ (baud), where τ is the symbol period. The convolution kernel is 

represented by a weight vector W of length R that is encoded in the optical power of the microcomb lines through 

spectral shaping performed by a Waveshaper. The 

temporal waveform X is multi-cast onto the kernel 

wavelength channels via electro-optical modulation, 

generating replicas weighted by W. Next the optical 

waveform is transmitted through a dispersive delay with 

a delay step (between wavelengths) equal to the symbol 

duration of X, achieving time and wavelength 

interleaving. Finally, the delayed and weighted replicas 

are summed via high speed photodetection so that each 

time slot yields a convolution between X and W for a 

given convolution window, or receptive field. The 

convolution window effectively slides at the modulation 

speed matching the baud rate of X. Each output symbol is 

the result of R multiply-and-accumulate operations, with 

the computing speed given by 2R/τ OPS. Since the speed 

of this process scales with both the baud rate and number 

of wavelengths, it can be dramatically boosted into the 

TOP regime with the massively parallel wavelength 

 

Figure 1 | Operation principle of the Tera-FLOPS photonic 

convolution accelerator. EOM: electro-optical Mach-Zehnder 

modulator. SMF: standard single mode fibre for 

telecommunications. PD: photodetector.  
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channels of the microcomb source. 

The length of the input data X is 

unlimited so that the convolution 

accelerator can process data with an 

arbitrarily large scale—the only 

limitation being the capability of the 

external electronics and the number 

of wavelengths (for speed).  

For matrix operations, the matrix is 

flattened into a vector, determining 

the sliding convolution window’s 

stride and effective matrix 

computing speed. Our flattening 

method resulted in an effective 

reduction (overhead) in matrix 

computing speed that scales 

inversely with the kernel size (a 3x3 

kernel yields an overhead 1/3). This 

can be avoided to produce 

convolutions with a symmetric stride 

and no speed overhead, but is not 

necessary for most applications. 

Figure 2 shows the experimental 

setup for the full matrix 

convolutional accelerator that we use 

to process a classic 500×500 face 

image. The system performs 10 

simultaneous convolutions with ten 

3×3 kernels to achieve distinctive 

image processing functions. The 

weight matrices for all kernels were 

flattened into a composite kernel 

vector W containing all 90 weights 

(10 kernels with 3x3=9 weights 

each), which were then encoded 

onto the optical power of 90 microcomb lines by an optical spectral shaper, each kernel occupying a band of 9 

wavelengths. The wavelengths were supplied by a coherent soliton crystal microcomb in a micro-ring resonator [7, 

12-16], radius = 592 μm, FSR spacing ~ 48.9 GHz, with a bandwidth of ~ 36 nm for 90 wavelengths over the C-band.  

The raw 500×500 input face image was flattened electronically into a vector X and encoded as the intensities of 

250,000 temporal symbols with a resolution of 8 bits/symbol (limited by the electronic arbitrary waveform generator 

(AWG)), to form the electrical input waveform via a high-speed electrical DAC converter, at a data rate of 62.9 Giga 

Baud (time-slot τ =15.9 ps) (Fig. 4b). The waveform duration was 3.975µs for each image corresponding to a 

processing rate for all ten kernels of > 1/3.975µs, or 0.25 million ultra-large-scale images per second. The input 

waveform X was then multi-cast onto the 90 shaped comb lines via electro-optical modulation, yielding replicas 

weighted by the kernel vector W. Following this, the waveform was then transmitted through a ~2.2 km length of 

standard single mode fibre having a dispersion of ~17ps/nm/km. The fibre length was carefully chosen to induce a 

relative temporal shift in the weighted replicas with a progressive delay step of 15.9 ps between adjacent wavelength 

channels. This delay exactly matched the duration of each input data symbol τ, which effectively resulted in time and 

wavelength interleaving for all ten kernels. 

The 90 wavelengths were then de-multiplexed into 10 sub-bands of 9 wavelengths, each sub-band corresponding to a 

kernel, and separately detected by 10 high speed photodetectors. The detection process effectively summed the aligned 

symbols of the replicas (the electrical output waveform of one of the kernels (kernel 4) is shown in [7] Fig. 4c). The 

10 electrical waveforms were converted into digital signals via ADCs and resampled so that each time slot of each of 

the waveforms corresponded to the dot product between one of the convolutional kernel matrices and the input image 

Figure 2 | Image processing. The optical and electronic control and signal flow (middle panel), 

and the corresponding processing flow of the raw input image (left panel). CW pump: continues-

wave pump laser. PC: polarization controller. EDFA: erbium doped fibre amplifier.  MRR: 
micro-ring resonator. EOM: electro-optical Mach-Zehnder modulator. SMF: standard single 

mode fibre for telecommunications. PD: photodetector. 
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within a sliding window (i.e., receptive field). This effectively achieved convolutions between the 10 kernels and the 

raw input image. The resulting waveforms thus yielded the 10 feature maps containing the extracted hierarchical 

features of the input image (Fig. 4d and Supplementary in [7]). 

The convolutional vector accelerator makes full use of time, wavelength, and spatial multiplexing, where the 

convolution window effectively slides across the input vector X at a speed equal to the modulation baud-rate — 62.9 

Giga Symbols/s. Each output symbol is the result of 9 (the length of each kernel) multiply-and-accumulate operations, 

thus the core vector computing speed (i.e., throughput) of each kernel is 2×9×62.9 = 1.13 TOPS. For ten kernels 

computed in parallel the overall computing speed of the CA is therefore 1.13×10 =11.3 TOPS, or 11.321×8=90.568 

tera-bits per second (Tb/s). This speed is > 500 x higher than the fastest speed of ONNs reported to date. The 

convolutional accelerator is fully and dynamically reconfigurable and scalable with the same hardware system. We 

used the accelerator to sequentially form both a frontend convolution processor as well as a fully connected layer, 

together yielding an optical deep CNN. We applied the CNN full 10 (0-9) handwritten digit image recognition.  

For the optical CNN the fully connected layer had ten neurons, each corresponding to one of the ten categories of 

handwritten digits from 0 to 9, with the synaptic weights represented by a 72×10 weight matrix WFC
(l)

 (ie., ten 72×1 

column vectors) for the lth neuron (l ∈ [1, 10]) –  with the number of comb lines (72) matching the length of the 

flattened feature map vector XFC. The shaped optical spectrum at the lth port had an optical power distribution 

proportional to the weight vector WFC
(l), thus serving as the equivalent optical input of the lth neuron. After being 

multicast onto the 72 wavelengths and progressively delayed, the optical signal was weighted and demultiplexed with 

a single Waveshaper into 10 spatial output ports — each corresponding to a neuron. Finally, the different node/neuron 

outputs were obtained by sampling the 73rd symbol of the convolved results. The final output of the optical CNN was 

represented by the intensities of the output neurons, where the highest intensity for each tested image corresponded to 

the predicted category. Supervised network training was performed offline electronically. 

We tested 500 8-bit 30 × 30 resolution images of the handwritten digit dataset with the deep optical CNN, achieving 

an accuracy of 88%. The computing speed of the VCA front end of the deep optical CNN was 2×75×11.9 =1.785 

TOPS, or 14.3 Terabits/s. The computing speed of the fully connected layer was 119.8 GigaOPS. The waveform 

duration was 30×30×84ps=75.6ns for each image, and so the convolutional layer processed images at the rate of 

1/75.6ns = 13.2 million handwritten digit images per second. Handwritten digit recognition, although a benchmark 

test in digital hardware, is still (for full 10 digit (0 - 9) recognition) beyond analog reconfigurable ONNs. Digit 

recognition requires a large number of parallel paths for fully-connected networks (e.g., a hidden layer with 10 neurons 

requires 9000 physical paths), which poses a huge challenge for current nanofabrication techniques. Our CNN 

represents the first reconfigurable and integrable ONN capable not only of performing high level complex tasks such 

as full handwritten digit recognition, but at ultrahigh TOP speeds. The optical latency of 0.11 μs of the dispersive fibre 

spool did not affect the operational speed, and can be eliminated (< 200 ps) with integrated highly dispersive devices 

such as photonic crystals or chirped Bragg gratings [17].  

In summary, we demonstrate an optical convolutional accelerator operating at 11.3 TOPS and use it to perform 

convolutions on face images with 250,000 8-bit resolution pixels. We then form an optical deep learning CNN to 

achieve recognition of handwritten digit images. Our network is capable of recognizing and processing large-scale 

data and images at ultra-high computing speeds for real-time massive-data machine learning tasks [18,19]. 
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