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Abstract: We review the design of multidimensional modulations by maximizing generalized mutual
information and compare the maximum transmission reach of recently introduced 4D formats. A model-
based optimization for nonlinear-tolerant 4D modulations is also discussed. © 2021 The Author(s)

1. Introduction
The design of multidimensional (MD) modulation formats has been considered as an effective approach to harvest per-
formance gain in optical communications. For an additive white Gaussian noise (AWGN) channel, higher achievable
information rates are to be expected from MD shaping when increasing the constellation dimensionality [1]. On the
other hand, nonlinear effects in the optical channel could be mitigated by MD geometrical shaping [2]. This insight
motivates the search for a linear noise and /or nonlinear interference (NLI)-tolerant modulation formats in a higher
dimensional space.

Conventional MD formats are not true MD formats in the sense that they are only optimized in each dimension
independently. This is the case of polarization-multiplexed 2D (PM-2D) formats. MD modulation formats with depen-
dency between dimensions can be obtained by set-partitioning the regular QAM (SP-QAM) or via MD geometrical
shaping. MD coded modulation encodes binary bits and then maps them onto consecutive 2D symbols or onto one MD
symbol. For example in 4D space, polarization switched-QPSK [3] maps 3 bits onto two consecutive QPSK symbols
while 4D2A8PSK [4] maps 5-7 bits onto two 8PSK symbols in both X and Y polarizations. More recently, modulation
formats in 4D, 8D and 12D have been proposed by adding constraints in the optimization to enable larger gains in
nonlinearity tolerance and to further extend the transmission reach [5–7].

In this paper, we focus on designing 4D modulation formats for soft-decision forward error correction (SD-FEC)
with 20%-25% overhead by maximizing the generalized mutual information (GMI) and ,thus, increase transmission
reach. Simulation comparisons for a set of 4D-optimized modulation formats, which outperform previously known 4D
formats, are presented. Finally, to highlight future directions for the design of nonlinear-tolerant modulation in optical
fiber systems, an optimization of dual-polarization (DP) modulation based on 4D NLI model [8] is performed.

2. GMI Computation and Design Methodology for Multidimensional Modulation
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Fig. 1: Example of di j calculation and the constellation set
Ib

k for 4D-OS128 [9] in first orthant of 4D space (2×2D).

Due to its simplicity and flexibility, bit-interleaved coded
modulation with SD-FEC is usually considered an attrac-
tive option for optical fiber communication systems [10],
and hence, the use of information-theoretical performance
metric GMI is preferred for coded modulation design [11].

For a discrete uniformly-distributed N-dimensional
modulation with spectral efficiency (SE) m = log2 M
bit/4D, the GMI under Gaussian noise assumption can be
estimated via Gauss-Hermite quadrature as [11, Eq. (45)],
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where the quadrature nodes ξl and the weights αl can be easily found (numerically) for different values of J. In this
paper, we use the quadrature nodes and weights for J = 10 in [11, Table III]. di j ≜ Xi − X j denote the difference
between two MD symbols, Xi = [x1,2

i , x
3,4
i , · · · , x

N−1,N
i ] denotes a MD symbol consisting of N/2 complex symbols,
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σ2
z is the noise variance per complex dimension and Ib

k ⊂ {1, 2, . . . ,M} with |Ib
k | = M/2 is the set of indices of

constellation points whose binary label is b at bit position k. Fig. 1 shows an example of computing di j of two 4D
symbols as d ( , ) for 4D format 4D-OS128. In order to clearly show the dependency of 4D symbols, we use a similar
color coding as in [9]: valid 4D symbols are the 2D projected symbols in the first/second 2D with the same color.

As shown in Eq. (1), GMI computation requires a joint consideration of the 4D coordinates and its binary labeling.
A GMI-based optimization can find a constellationX∗ and a labelingL∗ for a given channel conditional PDF pY|X with
a constraint on transmitted power σ2

x, i.e., {X∗,L∗} = argmaxX,L:E[∥X∥2]≤σ2
x
G(X,L, pY|X), where G as an expression of

GMI emphasizes the dependency of the GMI on the constellation, binary labeling, and channel law.
It is known that GMI-based optimization of large constellations and/or constellations with high dimensionality is

computationally demanding. Therefore, an unconstrained optimization with at least hundreds of GMI evaluations is
very challenging. Potentially irregular formats obtained from the optimization also impose strict requirements on the
generation and detection of the signals, due to the need of high-resolution digital-to-analog/analog-to-digital con-
verters. To solve the multi-parameter optimization challenges of MD geometric shaping and also to achieve a good
performance-complexity tradeoff, constraints of constant modulus [4, 5] and orthant-symmetry (OS) [9] have been
proposed to design N-dimensional formats. These solutions have shown a small performance loss with respect to the
unconstrained optimizations in AWGN channel and achieve an even better performance in the optical fiber channel.

3. Simulation Results of 4D Geometric Shaping for Multi-Span Systems Table 1: Simulation parameters.
TX Parameters

Symbol rate 45 Gbaud
No. of WDM channels 11

Channel spacing 50 GHz
Root-raised-cosine roll-off 10%

Fiber and Link Parameters
Attenuation coeff. (α) 0.21 dB/km
Disp. parameter (D) 16.9 ps/nm/km
Nonlinear coeff. (γ) 1.31 dB/km

Span length 80 km
EDFA noise figure 5 dB

To target a practical SD-FEC with 20%-25% overhead, the optimizations were
performed for AWGN channel at an SNR in which GMI ≈ 0.85m for six
different SEs with m ∈ {5, 6, 7, 8, 9, 10}. In order to make the modulation more
structured and reduce the optimization complexity, constraint of OS is used for
m = 7, 8, 9, 10. Split-step Fourier method of the nonlinear Manakov equation
with a step size of 100 m was performed to compare the modulation formats
and predict system performance. The simulation parameters are given in Table
1 for the optical fibre link under consideration.

In Fig. 2, the maximum transmission distance and the relative reach increase
in percentage at GMI = 0.85m of twelve modulation formats are evaluated. We observe that 4D-optimized formats
achieve approximately 320-2160 km (9%-25%) reach increase w.r.t PM-QAM/4D-SP-QAM at the same information
rates, which are highlighted by the orange shaded region. We note from Fig. 2 that larger reach increase in percentage
can be achieved w.r.t the QAM modulations without gray labeling. Especially comparing to 4D-SP32 and 4D-SP512,
the gains of 4D-optimized formats are more than 20%, which is mainly due to the superior performance of labeling.
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Fig. 2: The maximum reach of various modulation formats for multi-span optical fiber transmission. The 2× 2D
projection of the modulations at normalized GMI of 0.95 are depicted as (a) - (f).

4. 4D NLI Model-aided 4D Geometric Shaping for Single-Span Transmission
As noted in the previous section, most of the modulation formats in Fig. 2 are designed for AWGN channel, only 4D-
64PRS uses heuristic idea of constant-modulus constraint to improve the nonlinearity tolerance. For nonlinear fiber
channel, NLI power models with considering modulation-dependent interference could provide a quick computation
of the NLI power as a function of the input constellation, e.g., the enhanced Gaussian noise model [12] for PM-2D
format and 4D NLI model [8] for a general DP-4D format. Accordingly, to design a nonlinear-tolerant 4D modulation,
the optimization problem for a given optical fiber channel parameters P can be reformulated as,
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{X∗,L∗} = argmax
X,L

G
(
X,L,SNRopt(X,P)

)
, (2)

where SNRopt(X,P) denotes the optimum effective SNR at a given distance and depends on the modulation format.
In Fig. 3, the 4D modulation formats with a SE of 7 bit/4D are optimized with OS constraint via end-to-end learning

following [13] by maximizing GMI. The simulations are implemented by solving two optimization problems: one is
for AWGN channel with SNR=10 dB (AWGN-learned) and the other is for the 4D-model [8] with a single-channel,
234km single-span transmission system (4D model-learned). PM-QPSK as a format with a good nonlinearity tolerance
and 4D-128SP-QAM [14] with 7 bit/4D are shown as references.

Fig. 3 (left) shows that the 4D model-learned modulation can tolerate higher nonlinearity that achieves up to 0.25 dB
gain with respect to 4D-SP128-QAM in terms of SNRopt at 234 km. Fig. 3 (right) shows that in an AWGN channel
with an SNR of 10 dB, AWGN-learned modulation format provide the gain around 0.22 bit/4D (in term of GMI) with
respect to 4D-SP128-QAM, while the gain is around 0.18 bit/4D for 4D-learned modulation format. However, the
gain of the 4D model-learned modulation in an optical channel with fiber length of 234 km is increased to 0.29 bit/4D,
which is higher than that of the AWGN-learned format. This benefits from the improvement of SNRopt shown in
Fig. 3 (left). It well indicates that 4D model-learned modulation leads to a good trade-off between linear and nonlinear
shaping gain by increasing the linear shaping gain and maintaining a fair level of nonlinearity tolerance.
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Fig. 3: The SNRopt at 234 km (left) and GMI (right) of geometrically shaped 4D modulation format optimized based
on AWGN channel and 4D NLI model. In this example, M = 128.
5. Conclusions
We numerically assessed a series of multidimensional modulation formats for multi-span transmission systems.
We showed that the 4D-optimized modulation formats can be a solution for multi-rate applications between 5 and
10 bit/dual-pol. In addition, up to 0.25 dB NLI gains in terms of SNRopt are demonstrated for 4D model-based mod-
ulation optimization over a regular 4D format for a single-span transmission system. The results in this work confirm
that the multidimensional modulations could be a good alternative for high capacity transmission systems and offer
substantial potential gains in the nonlinear optical fiber channel.
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