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Abstract: We demonstrate an ML-based optical performance monitoring technique using 

constellation diagrams which accurately assess OSNR and generalized OSNR in a realistic 

deployment environment with product constraints. Limitations of OSNR estimation in commercial 

deployments are discussed. © 2022 Stephen E. Ralph 

 

1. Introduction 

Internet traffic demands have necessitated the continual improvement of data throughput in modern optical networks. 

To meet this growing demand, systems have utilized technologies with sophisticated DSP within a dense wavelength-

division multiplexing (DWDM) environment. The increasingly tight channel spacing of a WDM system combined 

with increasing baud rates and dynamic formats has created a dilemma for network operators where monitoring link 

performance, such as the optical signal-to-noise ratio (OSNR), has become difficult to impossible using conventional 

methods. Moreover, the accurate assessment of links has become difficult with the reduction of available system 

margins. Thus, there is increasing need to develop techniques for the accurate performance monitoring of live optical 

links.  

Conventional approaches for measuring OSNR use power spectral densities which are accessible via an optical 

spectrum analyzer (OSA) but are heavily influenced by neighboring channels and cannot readily assess the in-band 

noise. Thus, a variety of techniques which do not directly rely on the spectrum have been explored in an attempt to 

isolate the performance of a single channel. Some techniques require the operator to actively interact with the link 

such as transmitting a specific sequence to measure the power level difference between certain bits [1], however this 

can be intrusive and increases the system overhead. Other techniques for passively assessing the OSNR have been 

proposed [2-5]. Many of these works implement a machine learning based approach – these techniques are data-driven 

therefore requiring network operators to collect link information over the possible range of conditions that may be 

experienced in the field. However, these techniques are often demonstrated using simulated data or experimental data 

taken within a controlled environment that may not represent deployed conditions. For methods that require 

synchronous, real-time data, these techniques often do not consider key limitations such as memory constraints or 

application-specific integrated circuit (ASIC) design costs. 

Previously, we have demonstrated a method for estimating the OSNR of an optical link using a convolutional 

neural network (CNN) and the constellation images [6,7]. The constellation diagram is a readily accessible feature for 

optical links; however, generating constellations with real-time data is prohibitively expensive and memory is limited 

such that the number of constellation points may be drastically reduced compared to laboratory experiments. 

Furthermore, a large amount of data is required to train the neural network which requires either significant effort 

before deployment or downtime afterwards. In this work, we explore practical implementation of ML using 

commercial transceivers with a focus on emulating a commercial environment where constellations are generated via 

a small number of constellation points and limited data is used for training the CNN to estimate the OSNR, generalized 

OSNR (GOSNR), and bit error ratio (BER).  

2. Methodology 

2.1 Experimental Setup 

Figure 1 (a) depicts the optical testbed where two test channels from a commercial transceiver are configured to either 

69.44-GBd polarization-division multiplexed (PDM) QPSK or 16-QAM modulation at a channel spacing of 100 GHz 

to avoid filter and crosstalk effects. The remainder of the 4.8-THz optical WDM bandwidth was filled with spectrally 

shaped amplified spontaneous emission (ASE) noise [8] on a 50-GHz channel grid. A wavelength-selective switch 

(WSS) is used to combine the channels and equalize the power per channel. The channels are transmitted through a 

link composed of eight 50-km spans of standard single-mode fiber (SSMF) and erbium-doped fiber amplifiers 

(EDFA). A WSS is used after 4 spans for equalization to minimize wavelength dependent variations in channel power. 
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A variable optical attenuator (VOA) is present after each span to control the span loss which allows for nonlinearity 

to be varied independent of OSNR. The collected data includes 15 dB and 21 dB span losses, and four different launch 

powers spanning an 8-9 dB range across the linear and nonlinear regimes. An optical spectrum analyzer is used to 

monitor link conditions at various locations of the link such as OSNR (using signal on/off method), channel power, 

ripple, tilt, etc. GOSNR was measured from the corresponding back-to-back OSNR needed to achieve the same BER. 

After the 8-span link a WSS is used to demultiplex the modulated test channels before the receiver. Data, in the form 

of constellation diagrams, was collected over eight link conditions with various amounts of ASE and nonlinear noise.  

In a laboratory setting, data may be collected and processed with a large number of real-time symbols using tens 

of thousands of data samples [6]. In this work, constellation diagrams were generated from sparse constellations where 

the number of symbols was 6,144 symbols per data acquisition. This drastically affects the constellation density which 

is used as the feature of interest for the CNN, Fig. 1 (b)-(c). Constellation density is also used to measure the spread 

of constellation points and the spreading symmetry. ASE and nonlinear noise contributions induce symmetric 

constellation spreading while nonlinear noise contributions alone cause asymmetric spreading. 

2.2 Machine Learning Details 

CNN approaches have been popularized as an extremely effective method for automated image processing and 

classification. Figure 2 depicts the CNN architecture that was used to estimate a variety of parameters such as the 

BER, OSNR, and GOSNR from constellation diagrams. The architecture consists of three feature extraction layers 

(FELs) each composed of a convolutional layer with a nonlinear function (leaky rectified linear unit) as well as an 

average pooling layer. The final FEL implements a global average pooling layer. The final FEL connects to a series 

of three fully connected layers (FCLs) which performs the regression between the extracted features and the target 

output (BER, OSNR, and GOSNR). The FCLs consist of 200 neurons for the first two layers and 50 neurons for the 

last layer. The data was divided 60/20/20% for training/testing/validation with a total of 6,400 constellations spanning 

eight configurations. 

3.  Results 

The eight link configurations were chosen as a minimalist data set that span the linear and nonlinear noise conditions 

to test the limits of data required to accurately assess link performance. OSNR, GOSNR, and BER were chosen as the 

performance parameters of interest. Figure 3 (a)-(c) shows the results from training a CNN with constellation diagrams 

 
Figure 1: (a) Experimental setup which consists of 8 spans used to collect data for training and testing the CNN to estimate OSNR, GOSNR, 
and BER. (b) example constellation density with 60,000 symbols demonstrating potential laboratory conditions, (c) example constellation 
density with 6,144 symbols scaled to the 60,000-symbol constellation 

 
Figure 2: Convolutional neural network architecture consisting of three feature extraction layers and three fully connected layers. There is an 
implied leaky rectified linear unit between convolutional and pooling layers to generate a nonlinear mapping. The input image is a constellation 

density plot. The same architecture was used for OSNR, GOSNR, and BER estimation.  
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as the input and the performance parameters as the output. These outputs were trained using independent CNNs. The 

ML algorithm accurately estimates the BER with a mean absolute percentage error of 6.3% and a maximum absolute 

percentage error of 18.4%. The GOSNR estimation had a mean absolute error of 0.16 dB and maximum absolute error 

of 0.46 dB. This implies that despite the lower number of configurations with varying linear and nonlinear noise, the 

CNN can accurately assess the total signal noise. The GOSNR and BER are tightly correlated to the total spreading 

of the constellation which is readily apparent in the constellation density. It is expected that with more symbols, this 

estimation accuracy will be further improved due to increased statistical certainty. 

The average OSNR estimation results are shown in Fig. 3 (c). The estimations are compared to an ideal mapping 

between estimated and measured OSNR. The average estimated OSNR performs relatively well with some minor 

errors. It is noted that OSNR estimation is much more difficult than BER or GOSNR estimation as the OSNR 

estimation must separately identify the linear ASE contribution to the noise, i.e., extract the linear noise from a 

combination of linear and nonlinear noise. This is exacerbated by the limited amount of training cases to learn this 

relationship. Nonetheless the mean absolute error of the OSNR estimation was 0.57 dB with a maximum absolute 

error of 1.61 dB. The lower number of symbols in these test cases limits the statistics which are likely crucial to 

differentiate the linear and nonlinear noise as well as the fact that constellation density plots do not include temporal 

information which further obfuscates the issue. Increasing the number of symbols will reduce both the mean absolute 

error and, more importantly, the maximum error.  

4.  Conclusion 

Commercial applications have memory and hardware constraints which limit the quantity of readily available 

information at the receiver. We presented CNN-based optical performance monitoring using readily available 

constellation diagrams under realistic commercial conditions. The collected constellations reduced the memory 

requirements to sets of 6,144 symbols which eases the implementation cost. We note that since the constellation does 

not rely on temporal information, the implementation can be further simplified by using asynchronously sampled 

constellations Link configurations were limited to reduce the training data as collecting the data to train an ML 

algorithm is a time-consuming process which can extend link downtime. Accurate GOSNR and BER estimation was 

demonstrated and OSNR estimation was performed well with minor inaccuracies. The methods demonstrate that real 

time performance monitoring of key link metrics is feasible within a deployed system using constellation diagrams 

which are becoming a common feature of modern transceivers. 
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Figure 3: CNN estimation accuracy for both QPSK and 16-QAM modulation formats when trained on eight configurations which span a variety 

of linear noise and nonlinear noise conditions. (a) BER estimation accuracy, (b) GOSNR estimation accuracy, (c) OSNR estimation accuracy  
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