
Fig. 1. (a) Architecture of OSU-OTN; (b) Overall process for time-aware routing; (c) Enhanced robustness of the network. 
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Abstract: We propose a time-aware robust routing in OSU-based OTN through the newly designed 

graph sequence attention network-enabled reinforcement learning. Simulation results show > 28% 

OSU frame loss reduction compared to the baselines. © 2022 The Author(s) 
 

1. Introduction 

Benefit from the requirements of Fixed 5G (F5G) applications on stable and secure networking with high service level 

agreement (SLA), optical transport network (OTN) has been sunk from backbone to metro-aggregation enabled by 

optical service unit (OSU) [1]. For one thing, with flexible resource scheduling of OSU-OTN, network operators can 

allocate resources on-demand to accommodate future time-varying service requirements with high resource utilization. 

For another, long-term fixed routes are expected to ensure SLA, as the adjustment of established pipelines in OSU-

OTN will bring about service degradation. Such an anticipatory resource allocation within fixed routes, named time-

aware routing, should be driven by a suitable predictor. Nevertheless, traffic prediction can only predict general trends 

of traffic. Those traffic growth beyond expectations, such as sudden social events, will cause a serious impact as it 

may insufficient to be carried by the allocated route, and then loss of OSU frame (LOF) occur. Therefore, it’s 

significant to enhance the robustness of time-aware routing, that is, to reduce LOF caused by unexpected traffic growth. 

The robustness of time-aware routing can be effectively enhanced by extending load balancing to the time 

dimension, i.e. balancing the load of each link at each moment over a period. Recently, using reinforcement learning 

(RL) for network load balancing has shown significant advantages over heuristics in online optimal decision-making 

[2, 3]. However, previous RL-based studies only achieve balance by dynamically adjusting routing at each moment, 

ignoring the balancing requirements of long-term deployments in OSU-OTN. Moreover, the existing neural networks 

applied to RL agent can hardly meet the need for efficient perception of topologies with time-domain states. As one 

of the most famous variants of GNN which had been used for routing optimization combined with RL [4], graph 

attention network (GAT) introduces the attention mechanism to achieve adaptive matching of weights to neighbors 

[5], enabling efficient extraction of graph information and powerful generalization across topologies. Despite the 

advantages of GAT over GNN and even traditional convolutional neural network (CNN) for single-moment routing 

with RL, the optimization in reducing LOF is still limited when making decisions for time-aware robust routing, as 

no time-series correlation of bandwidth-occupied states in the topology are considered.  

In this paper, we first propose a time-aware robust routing strategy in OSU-OTN, where a newly designed graph 

sequence attention network-enabled RL (GSAT-RL) is adopted. In the RL agent, a gated recurrent unit (GRU) is 

introduced in GSAT to enhance the perception of the time-series. GSAT-RL tends to balance bandwidth requirements 

of time-series in the network. We compare GAST-RL with baselines including classical heuristic and RL-based 

algorithms under real traffic. Results show that the proposed strategy can achieve much lower LOF caused by traffic 

growth beyond expectations and exhibits a strong generalization ability. 
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Fig. 2. Simulation topology and structure of GSAT-RL. 
 

2.  Time-Aware Robust Routing in OSU-OTN 

Fig. 1 (a) shows a metro-aggregation network supported by OSU-OTN. Requests are accessed by active antenna units 

(AAU) or fiber access terminals, and transmitted to one of the candidate central offices (CO). OSU-OTN enables 

higher resource utilization than traditional OTN, as massive requests uniformly encapsulated by the fine-grained OSU 

frames can be mapped into one optical data unit (ODUk) with the guarantee of hard isolation [1]. We perform routing 

in the logical topology where each edge is an established lightpath with one optical channel transport unit (OTUCn), 

modelled as a directed graph. Multiple ODUk in a lightpath are represented as parallel edges of the graph. 

For improving utilization of bandwidth and providing long-term fixed routes, traffic prediction is used to predict 

bandwidth requirements for all services over the next 24-hour, which are used for pre-allocating time-aware routes as 

shown in Fig. 1 (b). The remaining bandwidth for each ODUk is expressed as a 24-hour time-series, and services are 

reserved in selected routes for bandwidth throughout the next 24-hour. However, sudden traffic growth due to 

unexpected factors in regional network load is unpredictable and will likely result in exceeding the remaining 

bandwidth of ODUk after deployment. In which case, the services deployed in these ODUk will lose OSU frames 

beyond capacity. To mitigate the impact of sudden traffic growth, the robustness of time-aware routing should be 

enhanced, i.e. the traffic load should be balanced across the network in the time dimension as shown in Fig. 1 (c). The 

network after balancing shows a more positive effect in carrying sudden traffic growth with lower LOF. We define 

𝜑𝑙 = 𝜇𝑙 + 𝜎𝑙 as the degree of time-aware load imbalance of link 𝑙, where 𝜇𝑙 and 𝜎𝑙 denote the mean and standard 

deviation of the time-series. 𝜑 is a more comprehensive representation of time-aware load imbalance than a direct 

mean value or peak value, as it reflects both average bandwidth usage and multiple bandwidth peaks. Furthermore, 

the maximum value of 𝜑 in the network is Φ, defined as the degree of imbalance of the network. We minimize Φ 

while routing to enhance the robustness of the network. We assume that the global routing optimization is triggered 

when the load is at the lowest point every day. 

3.  GSAT-RL Algorithm 

Through rounds of training between the network environment and the agent, RL achieves a reward-driven search for 

the optimal action under a certain state. The overall structure of GSAT-RL specifically applied for time-aware robust 

routing is shown in Fig. 2, where the states, actions, and rewards are defined as follows. 1) State: The network state 

includes the edge state and the node state, which respectively represent the remaining capacity of each link in the next 

24-hour and the betweenness centrality of each node. The request state consists of its one-hot encoded source node, 

destination node, and predicted bandwidth demand of 24-hour. 2) Action: The action is chosen from the action space 

which is set to all routes between all possible source and destination nodes by the RL agent. 3) Reward: When a 

request is deployed on the selected route, a reward value, set to max(𝜑𝑙1 , 𝜑𝑙2 , … , 𝜑𝑙𝑛), is calculated promptly to 

evaluate the quality of the chosen action for the current state, driving the agent to select routes with a more balanced 

strategy. Note that 𝑙1, 𝑙2, … , 𝑙𝑛 are the edges where the bandwidth usage changes after action is performed.  

For the feature extraction of the graph with time-series states in the RL agent, we propose to introduce GRU into 

GAT to improve the attention mechanism. GSAT enhances the ability to analyze the correlation of time-series between 

neighbor nodes and enables more effective graph information transfer for RL agent which is shown in Fig. 2 by 

assigning different attention weights to neighbors. 1) Message Initialization: Convolve the node state 𝑣 of each node 

with the edge state 𝑒 of all its adjacent incoming edges. After which they are summed up as the initial message �⃗⃗�  of 

each node. 2) Message Update: For each node whose feature is time-series, GRU is used for feature expansion, 

replacing the matrix 𝑊 in GAT. The output of GRU is given as Eq. (1-4), where 𝑊𝑧 ,𝑊𝑟 ,𝑊c, 𝑈𝑧 , 𝑈𝑟 , 𝑈𝑐 are trainable 

parameters, �⃗⃗� 𝑖
𝑡 is the current input value of node 𝑖 [6]. Note that ℎ𝑖

𝑡 implies the information transmitted at the previous 

time. We keep 𝐻𝑖 = [ℎ𝑖
0, … , ℎ𝑖

𝑇] as the expanded message of node 𝑖  and pass it to calculate the attention weight 

between neighbor nodes. For node 𝑖 and its neighbor node 𝑗, the attention weight 𝛼 𝑗𝑖 is calculated as Eq. (5), where 𝑎 

represents the weight of a single-layer feedforward network used to learn the relative importance between adjacent 

nodes. Furthermore, multi-head attention can be introduced for a better performance by expanding the length of 𝐻𝑖  

from GRU and splitting it to 𝑘 rows. Then the updated node message �⃗⃗� 𝑖
′ is given in Eq. (6). 3) Q-Value Calculation:  
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The nodes’ messages after multiple rounds of updates are averaged and fed into multiple hidden layers along with the 

request state. The outputs are the Q-value of 132 actions. We mask actions for which source node, destination node, 

remaining bandwidth of 24-hour, and delay (≤100μs) do not meet the current requirements by adding −𝑖𝑛𝑓 to the 

corresponding Q-value while training. After selecting the route with the maximum Q-value, the ODUk with the lowest 

𝜑 is selected by each segment. 

In our simulation, we trained the RL agent with Rainbow DQN. The agent is designed as a GSAT model, which 

adopts 3 attention heads and 3 GSAT layers with 16 hidden features. The following are 3 hidden layers with (256, 

256, 132) hidden neurons correspondingly. Hyperparameters are shared among the RL-based algorithms. 

4.  Simulation Results and Analysis 

We consider a topology as shown in Fig. 2, with 7 access nodes (Node 1-7), 2 CO nodes (Node 8-9), and 12 established 

lightpaths, each of which uses a pair of 200Gbit/s optical modules and contains two ODU4 (100Gbit/s per ODU4). 

The distances of lightpaths are randomly generated from 5 to 30km. The normalized bandwidth requirements are 

extracted from the real base stations in Shenzhen, China. 

We have compared our GSAT-RL with widely used first fit (FF), greedy algorithm (GBA), CNN-RL, GNN-RL, 

and GAT-RL. The link with the highest 𝜑 will limit the imbalance of the whole network, shown as Φ in Fig. 3 (a). 

We use the 5-45 real bandwidth of the requests to be carried on the routes calculated with the predicted ones to verify 

the ability in reducing LOF, which is shown in Fig. 3 (b). As can be seen from the above two figures, the above 

algorithms are less effective in enhancing the robustness of routing and reducing the global LOF than GSAT-RL, 

which achieves a frame loss rate of 1.05% when the number of requests reaches 45, enabling a 28% and 56% reduction 

in LOF compared to the GAT-RL and GBA respectively. Correspondingly, the higher the degree of imbalance of the 

network, the poorer the robustness, leading to a larger LOF rate. FF selects the first available route for the request’s 

predicted bandwidth of 24-hour, resulting in poor results. GBA is locally optimal and does not consider the impact on 

the following deployments. CNN-RL requires inefficient feature extraction in the adjacency matrix of the graph. GNN-

RL sums the messages of each neighbor nodes to update directly. GAT-RL incorporates an attention mechanism that 

measures the relevance between nodes and thus achieves far better results than GNN-RL, yet the attention mechanism 

is calculated without considering the correlation of the time-series. Fig. 3 (c) shows the convergence process of the 

above RL-based algorithms. GSAT-RL has better convergence performance as it has a more powerful ability to extract 

complex information with time-series from topology. Finally, we also verified the generalization ability for topology 

of the GSAT model in Fig. 3 (d). We remove lightpath 1-2 as a new topology, and update the action space to retrain 

the RL agent from 0 to 300 episodes. The results show that retaining the GSAT weights trained in the original topology 

leads to faster convergence and comparable LOF results after convergence compared to retraining the GSAT model.  

 
Fig. 3. (a) Φ vs. requests; (b) LOF rate vs. requests; (c) Convergence process; (d)Validation of generalization. 

5.  Conclusions 

We proposed a novel GSAT-RL algorithm for the time-aware robust routing in OSU-OTN to reduce OSU frame loss 

caused by unexpected traffic growth. Simulation results validated our inspiration that GSAT-RL had a better 

performance in enhancing robustness and reducing the global LOF than the state-of-art algorithms. The generalization 

ability for topologies of the GSAT model was also verified. 
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