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Abstract: We introduce an optically interconnected disaggregated architecture for GPU
resources and demonstrate a 3x increase in GPU utilization and up to 73.2% acceleration
of application runtime for distributed machine learning workloads. © 2022 The Author(s)

1. Introduction

Distributed machine learning applications have become a significant part of today’s high performance computing
and data center workloads[1]. When training a distributed machine learning model across multiple nodes due to
system fragmentation in the conventional server-centric architecture, inter-node communication becomes more
bottlenecked than intra-node communication due to both higher latency and lower link bandwidth. The problem
becomes even worse when scaling to a larger number of nodes as the inter-node links will be further congested due
to heavy inter-node communication. This results in significant resource under-utilization in conventional server-
centric architectures[2]. Resource disaggregation provides a solid solution to this problem by providing a flexible
allocation of fine-grained hardware into virtual nodes[3].Optical circuit switches (OCSs) provide high bandwidth,
low cost solution to de-fragment and pool disaggregated resources with minimal latency overhead. In previous
work, OCSs have been proposed to achieve resource disaggregation[2][4][5], however, the prior work was limited
to a generic concept without system-level demonstration.

In this work we demonstrate rack-scale GPU disaggregation with OCSs and emulated aggregator switches,
and show the capability to reconfigure resources to reduce communication overhead. Our proposed architecture
leverages the flexibility of optical switches to increase hardware utilization and reduce application runtimes by
alleviating system fragmentation. We build up our testbed using 4 commercial rack servers with 6 GPUs, 2 emu-
lated aggregator switches and a MEMS switch to demonstrate resource disaggregation and defragamentation using
application containers. Our testbed experimental results show 73.2% and 62.0% improved workload completion
time with 3x increased GPU utilization in two test cases.
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Fig. 1. (a) Traditional architecture for GPU clusters; (b) proposed system architecture for disaggre-
gated GPU resources.
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2. System Architecture

Figure 1 shows our proposed system architecture with Aggregator Switches (AS), Optical Circuit Switches (OCS)
and a pool of disaggregated GPU resources. The aggregator switches are essentially packet switches that con-
nect a group of heterogeneous resources. For example, an equivalent device in traditional architecture would be
NVSwitch or PCIe Switch. Traditionally in distributed AI/ML applications, nonstop synchronization of large gra-
dients implies an urgent need to allocating its GPU instances in a single machine[6]. Top-of-rack switches can
act as aggregators to hold recomposed resources and to connect multiple types of devices. By reconfiguring the
optical links between GPUs and our aggregator switch, disaggregated resources can be rearranged to reduce sys-
tem fragmentation and increase job locality. As a result, the disaggregated system performance and efficiency is
improved by the increased utilization and maximized traffic locality.

Accommodating OCSs in the network of disaggregated resources enables flexible connectivity of the network
topology as needed by the application. For GPUs, different AI/ML applications have different requirements on
the number of GPUs needed, varying from one to hundreds. Furthermore, this architecture can be adapted to
provide flexibility to re-assemble heterogeneous computing resources for specific application needs, such as CPU,
memory. In this case, the issue of low port counts of OCSs can be tackled by using multiple low-radix switches at
the same time combined with other methods like locality-driven job scheduling.
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Fig. 2. (a) Network control plane, (b) testbed architecture and (c) hardware implementations using
Calient MEMS switch, server rack with ToR switch and rack server.

3. Experimental Setup and Results

We build up our testbed with 6 NVIDIA GPUs installed into 4 commercial rack servers to demonstrate the ca-
pabilities of emulating deep disaggregation of GPUs and resource reconfiguration with OCSs. Each server is
installed with a Tesla M40 GPU. In addition, two Titan V GPUs are inserted into the servers. All of them are
connected with Mellanox ConnectX-4 NICs that enables RDMA over Converged Ethernet v2 (RoCEv2) for im-
proved performance. In Fig.2 we show the network control plane for our testbed. We use a SDN controller to host
management applications, including EPS flow table control, optical switch control, and container management
through Ethernet.

When running an ML workload we reserve a certain number of GPUs and create one Docker container for each
of them on their corresponding servers. On the servers, each container has one and only one GPU visible to it. The
container’s network I/O is then mapped to a specific NIC port on the physical machine with a unique IP address.
By doing this we’re able to (1) send gradient updates directly from one GPU to another without the participation
of other resources; (2) assign specified IP address for each GPU resource in the network. This allows us to emulate
and study these GPUs as they are deeply disaggregated. We use Tensorflow to build distributed machine learning
applications to synchronously train a modified VGG16 neural network across multiple workers. Two different
cases of ML workloads were studied on this topology. One in Fig. 3a shows two different jobs (red/blue) requiring
4 and 2 GPU resources for synchronous training, using ring all-reduce algorithm. The other case, as shown in Fig.
3b, shows two workloads with 3 and 3 GPUs required for synchronous training, using the same ring all-reduce
algorithm. We obtained network I/O throughput for each Docker container using Ryu SDN monitoring program,
and the GPU performance data is queried by nvidia-smi.

In case (a) the red workload spent 407s to complete when there is no reconfiguration, compared to 109s after
regrouping all 4 GPUs under the same ToR switch. This yields a 73.2% reduction in completion time and a 3x
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Fig. 3. Top: testbed topology for (a) Two synchronous ML workload using 4 and 2 GPUs for training,
respectively (b) Two synchronous ML workload using 3 and 3 GPUs, respectively. Two jobs are
ran simultaneously, represented by red/blue connections to its related GPU. Experimental results
from the red workload is presented here as middle: network throughput and bottom: average GPU
utilization over time. Finer-grained utilization data are shown as in background underlay.

utilization increase during training phase. In case (b) our workload of concern spent 368s before reconfiguration
and 140s afterwards. Here we obtained 62.0% reduction in training time, while no significant improvement in
resource utilization is observed. However, there is an expected increase in network throughput that indicates a
higher effective utilization of the GPU after reconfiguration. Without the reconfiguration, resource fragmentation
undermines the application performance of the workload running on top and interferes with other application
flows. We find that OCSes can significantly help increase performance and hardware utilization in disaggregated
systems running AI/ML workloads.

4. Conclusion

We demonstrated an optical disaggregated architecture with flexible resource connectivity for distributed machine
learning applications. Our proposed control plane separates the GPUs within a single server and enables disag-
gregation using RoCEv2. Our results show 73.2% and 62.0% improved training time and 3x increase in GPU
utilization for the machine learning workloads.
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