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Abstract: We introduce a polynomial-time distributed message passing algorithm for
routing and wavelength assignment. Exact global solutions are obtained for small-scale
networks and improvements are demonstrated on network scales beyond the reach of es-
tablished global algorithms. © 2022 The Author(s)

1. Introduction
Wavelength division multiplexing (WDM) networks underpin global communication infrastructures, vital for to-
day’s information society. One of the key problems in implementing dynamic optical WDM networks is the rout-
ing and wavelength assignment (RWA) under dynamic traffic scenarios [1, 2], where path and wavelength pairs
(lightpaths) must be assigned to satisfy the demand of incoming traffic requests. This is a difficult optimisation
problem, as the sequence in which the traffic requests arrive has a significant impact on the network performance
(e.g. blocking probability, resource utilisation, etc.) [2]. Previously, in order to tackle this, heuristic routing strate-
gies such as random wavelength allocation, load balancing and wavelength packing were used in dynamic RWA
scenarios [1]. However, these strategies tackle traffic requests one-by-one, consistently leading to sub-optimal so-
lutions. A solution to this is batch processing [3], which significantly improves packing performance compared
to the one-by-one approach, although the optimal routing of a traffic batch is also an NP-hard problem [3]. The
computational complexity of global optimisation methods, such as integer linear programming (ILP), grow expo-
nentially as the network scale increases. Alternatively, local heuristics offer lower computational complexity but
cannot ensure the global optimality of the solutions found [4]. In addition, traditional global optimal approxima-
tion methods such as meta-heuristics, search the solution space by constructing random solutions based on their
own policies, which cannot ensure the optimality in reasonable time.

Message passing (MP), also known as belief–propagation or the cavity method [5, 6], has been shown to be a
polynomial time global approximation method for static routing problems in large-scale networks [7–9]. It is based
on iteratively passing conditional probabilities between neighbouring variables until convergence to facilitate the
calculation of optimal solutions. In this paper, we describe a new MP-based algorithm, in conjunction with batch
processing, for solving the dynamic RWA problem. Simulation results show that MP achieves the same global
solutions as ILP in reduced computing times for small graph instances, as well as having significant advantages in
both blocking probability and resource utilisation compared to baseline methods, including first-fit k-shortest-path
(FF-kSP), k-shortest-path first-fit (kSP-FF) [10] and adaptive shortest path (A-SP) [1], for large graph instances
(≈ 100 nodes).

2. Message Passing Method
In this work, we have constructed the RWA problem as a pure edge-disjoint routing problem in a logical network,
as shown in Fig. 1. The number of nodes, edges, traffic requests and wavelengths in the original WDM network
are denoted as N, E, M and Q, respectively. All original nodes and edges are duplicated Q times, representing the
paths available on different wavelengths. Virtual source and destination nodes (e.g. µ1 in Fig. 1) are introduced
for every traffic request ({µ1, . . . ,µM}), which connect to the corresponding nodes on all wavelengths.

An MP model is developed to minimise the total path length over the previously constructed logical network.
Other objectives and a variable number of wavelengths per edge can be easily accommodated within the same
framework. The general idea of MP is to map the global optimisation problem onto localised inference tasks to
obtain a common optimal solution. This distribution of tasks is key to reducing computational complexity and
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Fig. 1: Demonstration of message passing.

allows for the algorithm to scale well to larger networks. The MP model could be described as follows. Firstly, a
variable µλ

i, j is introduced to represent the traffic request passing an edge (i, j) on wavelength λ . It takes a value
within {0,±µ1, . . . ,±µM}, which represents the traffic index (negative values means the traffic passes inversely).
The message φ λ

i→ j(µ) is related to the probability of passing message µ from nodes i to j using wavelength λ

given similar probabilities provided from the sub-graph G[i j], a sub-tree component of the logical network (when
the network is not a tree, it is an approximation), as shown in Fig. 1. The process is iterative and once it converges,
the objective function of MP can be obtained as described in Eq. (1), where wi, j represents the weight of edge
(i, j). δ

y
x is the Kronecker delta such that δ

y
x = 1 only if x = y; and δ

y
x = 0 otherwise.
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The self-consistent MP iterative equations for intermediate nodes (left) and virtual source/destination nodes

(right) are listed in Eq. (2). For each node i ∈ N, we define ∂ i \ j as the adjacent node set of node i except node
j, and ~µ∂ i\ j as an allocation of traffic requests on associated edges of node i except edge (i, j). “Matching Pairs:
~µ∂ i\ j” refers to the condition that every lightpath in ~µ∂ i\ j comes and leaves node i without passing through edge
(i, j). The equations in the left set of Eq. (2) describe the scenarios of traffic µ not passing through edge (i, j)
(top) and passing through edge (i, j) on wavelength λ (bottom), corresponding to the lightpath situations of λ2
and λ1 in Fig. 1, respectively. While the right set of Eq. (2) refers to the virtual source/destination node selecting
the same single wavelength λ at the start/end of a lightpath for traffic µn. The messages (φ λ

i→ j(µ)) only relates to
the messages from its adjacent nodes. Thus, by passing the messages iteratively, the routing information spreads
across the whole network, leading to an (near-)optimal solution upon convergence. Moreover, the computational
complexity of MP is greatly reduced from O(2Q·M·E) to O(MQ(M

N +N +Q)) compared to ILP.

3. Results and Discussions
To verify the efficiency and optimality of the MP method, we firstly calculated the minimum number of wave-
lengths (Qmin) needed for all-to-all traffic requests on 4 real core networks: NSFNet (NSF), Google B4 (GB4),
DTAG/T-system (DTAG) and BT-Core (BT) networks [11, 12]. Table 1 shows that MP achieves the same results
(Qmin and total lightpath length L) as the ILP, yet on average takes only 61% of the ILP’s computing time.

To further explore the performance of MP, we conducted a dynamic RWA simulation using a 100-node 130-
edge graph, generated with the SNR-BA model [13]. For the physical layer, we assumed a full C-band (1530-1570
nm) transmission with 156 wavelengths (32 GHz Nyquist-spaced) on all fibre links. A Poisson traffic model [14]
was implemented, with the demand distributed uniformly among all node pairs. For each network load (Erlang per
wavelength), we generated 10 sets of 10,000 requests with a batch size of 200. Thereafter, FF-kSP, kSP-FF and
A-SP are used as baseline dynamic RWA methods for comparison.

As shown in Fig. 2(a), MP achieved the lowest blocking probability under all network loads. Compared to one
of the widespread, and in some cases, commercially implemented method kSP-FF, MP achieved 8.9% blocking
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probability reduction at the loads of 3-10 Erlang per wavelength (Fig. 2(a) inset). At the highest load of 10 Erlang
per wavelength, the average blocking probability of MP is 2.6% less than A-SP (best of the baseline methods),
which is a 9.4% relative enhancement. To understand how the routing methods use the resources (wavelengths)
of the network, the resource utilisation rate was defined as ∑e λe

Q·E , where λe is the number of wavelengths used
on edge e. As shown in Fig. 2(b), the kSP-FF and FF-kSP heuristics both end up under-utilising the network
resources, since they have a limited number of k-shortest paths to choose from. A-SP is able to find the shortest
path available over all the wavelengths, yet still limited by the one-by-one lightpath allocation approach. The MP
method takes the whole batch into account and finds the minimum total path length of that batch, whilst still
attempting to allocate as many requests as possible. This allows for better lightpath allocations that reduce 9.4%
relative blocking, whilst still using 2.6% relative less wavelengths at the same time.

Table 1: Static RWA results

Network NSF GB4 DTAG BT
Nodes 14 12 14 22
Edges 21 19 23 35

ILP
Qmin 13 16 14 39

L 195 153 218 697
T (sec) 45 16 20 273

MP
Qmin 13 16 14 39

L 195 153 218 697
T (sec) 7 9 17 239 Fig. 2: (a) Blocking Probability (left), (b) Resource Utilisation Rate (right) – 95% CI

4. Conclusions
We proposed a new scalable probabilistic algorithm for dynamic RWA in optical networks. Unlike the traditional
RWA methods, which are either non-scalable in the search for a global optimum (e.g., ILP) or find local optima in
a greedy manner (e.g., heuristics or meta-heuristics), MP converts the global optimisation problem into distributed
local optimisation, solved by iteratively passing self-consistent probabilistic messages. This facilitates obtaining an
approximate global RWA solution in polynomial time. MP was shown to give exact global solutions for small scale
networks compared to ILP and offer a 9.4% relative reduction in blocking probability than the best performing
heuristic in a large scale network (100 nodes). Work is ongoing to support the re-routing functionality, critical for
adaptive, dynamic RWA applications, which has the potential to keep the network operating at near-optimal states.
Financial support from the Programme Grant TRANSNET (EP/R035342/1) and UK EPSRC Doctoral Training Programme is gratefully
acknowledged. Microsoft is thanked for the support under the ’Optics for the Cloud’ programme.
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