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Abstract: We propose a step-size optimization scheme of the split-step Fourier method for 

longitudinal power profile monitoring. We observe only a 1.06-dB root-mean-square error from the 

theoretical power profile for a 2,080-km transmission link. © 2022 The Author(s) 

1. Introduction 

Operating an optical transmission system at its maximum data rate under individual channel conditions has become 

increasingly challenging. One reason is that recent rate-flexible transceivers provide an enormous variety of 

transmission modes, and thus selecting the best one for a given transmission channel is a daunting task. As another 

reason, along with the increasing demand for high spectral efficiency (SE), system operators have to preset larger 

margins in optical signal-to-noise ratio (OSNR) since higher SE signals are typically more susceptible to channel 

noises, which hinders the full use of the potential capacity.  

The first essential step to be commonly taken for these issues is to correctly perceive the transmission link status, 

such as the longitudinal optical power evolution [1-3], amplifier’s gain tilt [4], and filters’ frequency detuning [2,3], 

which can then help to estimate the fiber nonlinearity, OSNR, and filtering penalties. Accordingly, longitudinal signal 

power profile monitoring has been demonstrated using a correlation method [1], a split-step Fourier method (SSFM) 

based channel reconstruction [2,4], and a Volterra-based method [3]. However, though these methods reveal multi-

span power profiles only from online signals with the receiver-side (Rx) digital signal processing (DSP), they suffer 

from the following issues: (i) obtained profiles have dead zones at the beginning and end of spans, where significant 

deviations from true power profiles are observed; (ii) fiber launch power far higher than the system operational range 

is required to achieve adequate estimation performance since these methods highly rely on the fiber nonlinearity. 

In this work, we present an optimization method of the spatial step size in SSFM for longitudinal power profile 

monitoring, which has so far adopted the uniform step size, and experimentally assess the different step size selection 

rules. Results show that the combination of the proposed scheme and the selection rule named the local error method 

(LEM) [5,6], which employs step size ℎ(𝑧) ∝ 𝑃(𝑧)−1 for asymmetric (A-) SSFM, minimizes the dead zones and 

provides an excellent agreement between estimated and theoretical power profiles. We observe that this rule achieves 

root mean square (RMS) errors of 1.06 and 1.68 dB from the theoretical power for 2,080 km at a fiber launch power 

of 6 dBm and at the system optimum launch power -2 dBm (at 64 GBd), respectively. 

2. Spatial Step-Size Selection Rules for SSFM 

In this work, power profiles are obtained using A-SSFM for the Manakov equation, where the chromatic dispersion 

(CD) exp⁡(𝑫̂ℎ) = exp(− 𝑖 2⁄ ∙ 𝛽2 ⁡𝜕
2 𝜕𝑡2⁄ ℎ) and the nonlinear phase rotation (NLPR) exp⁡(𝑵̂ℎ) = exp(𝑖𝛾′(𝑧)ℎ) are 

iteratively applied to the signals 𝑬(𝑧, 𝑡), where 𝛽2 the group velocity dispersion (GVD), 𝛾′(𝑧) = 8 9⁄ ∙ 𝛾𝑃(𝑧), 𝛾 the 

nonlinear coefficient, 𝑃(𝑧) the signal power, and ℎ the step size. Our estimation target is 𝛾′(𝑧) since power profiles 

can be calculated as 𝑃(𝑧) = 9/8 ∙ 𝛾′(𝑧)/𝛾. We find 𝛾′(𝑧) from boundary conditions, i.e., transmitted⁡𝑬(0, 𝑡) and 

received signals⁡𝑬(𝐿, 𝑡), in the minimum mean square error (MMSE) criterion as in [2,4,7].  

For SSFM simulations, several works discussed its step-size selection rules for a more precise simulation of 

nonlinear Schrödinger equation (NLSE) with a lower number of fast Fourier transform. The simplest rule is the 

uniform step size. Another rule is the walk-off method, where the step size is determined to bound the largest GVD 

difference. This method is the same as the uniform step size when homogeneous fibers are used in a link. The third 

one is the NLPR method, where NLPR is bounded in each step. In [5], LEM was proposed, where the step size ℎ was 

selected so that the local error of each step was bounded. The analytical expressions of LEM for both A- and symmetric 

(S-) SSFM were derived in [6] as ℎ(𝑧)2 ≤ 𝜀 {𝛾𝑃(𝑧)⁄ (2𝜋|𝛽2|𝐵𝑤
2)}  and ℎ(𝑧)3 ≤ 𝜀 {𝛾𝑃(𝑧)⁄ (2𝜋|𝛽2|𝐵𝑤

2)
2
} , 

respectively, where 𝜀 is a local error,⁡ 𝐵𝑤 the simulated bandwidth. However, simply bounding the local error does 

not guarantee the bounded global error. Thus, under the assumption that the global error is a linear accumulation of 

local errors in each step, the step size should be taken as ℎ(𝑧) ∝ 𝑃(𝑧)−1 and ℎ(𝑧) ∝ 𝑃(𝑧)−0.5 for A-SSFM and S-

SSFM, respectively [6]. In the following experiments, we use homogeneous fibers with constant 𝛾 and 𝛽2 in a link, 

and assume 𝐵𝑤 will not change during the propagation; thus, we eliminated these parameters. Note that the former 
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rule (ℎ(𝑧) ∝ 𝑃(𝑧)−1) is the same as the NLPR method in this situation. Though our method is based on A-SSFM, the 

latter rule for S-SSFM could also be a candidate since a finer step size is preferable for the sufficient spatial resolution, 

and for such a small ℎ, S-SSFM can be approximated as A-SSFM. To summarize, in this work, all these rules become 

the matter of the order 𝑝 of 𝑃(𝑧) and thus we investigated 𝑝 dependency of power profiles. 

3. Step-Size Optimization Method for Power Profile Monitoring 

However, these step size selection rules require a priori knowledge of 𝑃(𝑧) ∝ 10−𝛼𝑧/10 and thus loss coefficients 𝛼, 

though the goal of the monitoring is to estimate ⁡𝑃(𝑧). To address this issue, we first obtain a power profile under 𝑝=0 

(uniform step size) and then estimate 𝛼 around the center of the spans (Fig. 1(a)). In this work, we use powers from 

40% to 50% position from the beginning of the span to calculate 𝛼. Using estimated 𝛼, we recalculate ℎ(𝑧) ∝ 𝑃(𝑧)𝑝 

and the same procedure continues iteratively until the estimated 𝛼 converges. Similarly, the amplifiers’ positions 

should also be available in advance. Although they are assumed to be known in this work to focus on the effect of the 

step size selection, their positions can also be estimated from a power profile by taking the second derivative of it. 

To assess the different step size selection rules, we conducted 280-km and 2,080-km transmission experiments. 

Fig. 1(b) shows the setup and the same Tx and Rx are used for both transmissions. In Tx DSP, single-channel PS-

64QAM (𝐻=4.347) 64 GBd (400G) with a roll-off factor of 0.2 is generated and emitted from a 4-ch arbitrary 

waveform generator (AWG) at 120 GSa/s. Tx and Rx laser have a 40-kHz linewidth at 1555.754 nm. On the Rx side, 

a 256 GSa/s digital sampling oscilloscope (DSO) digitizes the signal and offline Rx DSP is performed. In Rx DSP, 

frequency offset compensation, CD compensation, polarization demultiplexing, and carrier phase recovery. For power 

profile monitoring, signals are divided into two paths: one is for the transmitted signal regeneration [1,2], and the other 

reloads CD on the signals. CD-reloaded signals are then fed into A-SSFM to backpropagate to the transmitter (i.e., 

digital backpropagation [8]). The global error (square error) is calculated from the output of A-SSFM and regenerated 

transmitted signals for the gradient descent optimization of 𝛾′(𝑧) in A-SSFM. 20 profiles are averaged for each profile. 

We prepared two transmission test cases. For the results in Fig.2, we used a straight line 4 × 70 km and fiber launch 

power is set to 6 dBm. For the results in Fig. 3, we conducted a 2,080 km transmission using a recirculating loop, in 

which one circulation consists of 5-span 260 km. In this case, the fiber launch power is varied from -4 to 6 dBm to 

see the fiber input power dependency. The inline fibers are standard single-mode fibers with 𝛼=0.186 dB/km, 𝛽2=-

21.7 ps2/km, and 𝛾=1.11 1/W·km. Amplifiers used in both transmissions are erbium-doped fiber amplifiers (EDFA). 

4. Results and discussion 

Fig. 2(a) shows power profiles with different step sizes ℎ(𝑧) ∝ 𝑃(𝑧)𝑝 = 10−𝑝𝛼𝑧/10 for the 280-km transmission. For 

reference, the theoretical power profile measured by an optical time-domain reflectometry (OTDR) is also shown. 

Note that, to see the capability of estimating the true power, we assume the fiber nonlinear coefficient⁡𝛾 is known 

(1.11 1/W·km) and thus the absolute power is shown in the vertical axis. For all profiles, the number of split steps is 

 
Fig. 1. (a) Proposed step-size optimization scheme for longitudinal power profile monitoring. (b) Experimental setup. 
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Fig. 2. (a) Estimated power profiles for 280-km transmission with various step size selection rules ℎ(𝑧) ∝ 𝑃(𝑧)𝑝. (b) Step sizes⁡ℎ(𝑧) ∝
𝑃(𝑧)𝑝 for various 𝑝. (c) Estimation error from theoretical power profiles as a function of 𝑝. 
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fixed to 560. As shown in Fig. 1, we start from the uniform step size (𝑝=0), which has dead zones at the beginning 

and end of the spans and there a large deviation from OTDR is observed. From this profile, 𝛼 of 4 spans are estimated 

as 0.185, 0.179, 0.205, and 0.187 dB/km, respectively. Then we recalculate ℎ(𝑧) ∝ 𝑃(𝑧)𝑝 = 10−𝑝𝛼𝑧/10. In Fig. 2(b), 

we show examples of ℎ(𝑧) for various 𝑝. Using these ℎ(𝑧), we recaptured profiles as shown in Fig. 2(a). As 𝑝 

decreases from 𝑝=0, the dead zones diminish and the profiles fit the OTDR line except for the last span. For 𝑝 lower 

than -1, the profiles again begin to separate from OTDR in the opposite direction. Though a further investigation of 

the last span’s behavior is needed, the estimation performance improvement is clearly observed. The optimum 𝑝 is 

around -1 (Fig. 2(c)) and this implies that LEM for A-SSFM or the NLPR method performs well. 

Next, we applied our scheme to the 2,080-km transmission. Fig. 3(a) shows the power profiles obtained under 𝑝=0 

and -1 for fiber launch powers of 6 and -2 dBm. The total number of steps is 1,040. Three things are notable: (i) even 

in the long-haul case, 𝑝=-1 shows a good agreement on the theoretical power, while 𝑝=0 generate more dead zones; 

(ii) the fiber launch power can be estimated from 𝑝=-1 with high precision; (iii) the profiles show lower power than 

theoretical one near the Tx. These tendencies are quantified in Fig. 3(b) and (c). In Fig. 3(b), we can observe that, 

from the 20 to 40th span near the Rx side, 𝑝=-1 exhibit an excellent fitness to the theoretical power with errors below 

1 dB, while significant deviations are observed near the Tx side. This deviation is explained as suppression of the 

noise enhancement. As the Rx signal backpropagates SSFM, noise enhancement occurs in each NLPR block. Since 

the optimization of 𝛾′(𝑧) is based on the MMSE criterion, optimized 𝛾′(𝑧) tend to be small to avoid further noise 

enhancement. Fig. 3(c) shows the histogram of position-wise errors for Pin -2 dBm. 𝑝=-1 shows a narrower 

distribution, and 95% of errors are within 3.47 dB while those for ⁡𝑝=0 are within 5.70 dB. Fig. 3(d) shows the fiber 

launch power dependency of the RMS error. Note that the optimum launch power for the system is -2 dBm. 𝑝=-1 

provides approximately a 1-dB improvement in the RMS error over 𝑝=0 for any launch power. Finally, only 1.06 and 

1.68 dB RMS errors are observed for Pin 6 and -2 dBm, while 𝑝=0 shows a 2.6 dB error at most. 

5. Conclusion 

We have presented the spatial step size optimization scheme for the digital longitudinal power profile monitoring and 

evaluated different step size selection rules. Results show that the rule⁡ℎ(𝑧) ∝ 𝑃(𝑧)−1 provides an excellent agreement 

between estimated and theoretical power profiles and has achieved 1.06-dB and 1.68-dB RMS errors from the 

theoretical power profile for a 2,080 km transmission at a launch power of 6 dBm and at the system optimum power 

-2 dBm at 64 GBd. 
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Fig. 3. (a) Estimated power profile (𝑝=0, -1) for 2,080 km transmission with fiber launch powers Pin of 6 and -2 dBm. (b) Estimation error 

of obtained profiles in (a) from theoretical power profiles as a function of span number. (c) Histogram of estimation error from theoretical 

power profiles at Pin -2dBm. (d) Estimation error from theoretical power profile as a function of fiber launch power. 
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