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Abstract: Quantum transducers are the back-bone technology and enabler for the Quan-
tum Internet. We created a Deep Reinforcment Learning control framework to overcome
current, low conversion efficiencies, bringing quantum transducers towards practical use.
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1. Overview

Quantum networks are going to disrupt how we perceive super-computing networks. Quantum network test-bed
programs prompt the development of advanced management and control strategies to distribute entanglement
across a multi-node quantum network. Long-distance distribution of quantum information across a network needs
preliminary demonstrations and exploration of quantum network applications, but is a challenge due to errors
arising from decoherence channels in quantum network components. In this demo, we address these challenges
through the development of advanced control routines that improve the Quality of Entanglement (QoE) between
network nodes demonstrating a truly distributed quantum network.

Quantum operations on noisy quantum hardware are enhanced by firmware level optimization of microwave
and optical control signals. These engineered pulses enhance the fidelity of quantum operations, leading to in-
creased performance capability needed to demonstrate a quantum advantage on current quantum processors. In
quantum physics, model-based optimization techniques, however, are insufficient due to the difficulty of modeling
quantum systems coupled to decoherence channels. In this demo, we present AI solutions, particularly a Deep
Reinforcement Learning (DRL) algorithm, to learn the best pulses to maximize quantum network performance.

Connecting quantum processors across a network requires the conversion of quantum information from mi-
crowave photons to optical photons [2]. Challenges for transduction of quantum information arise from the strong
coupling needed between the microwave and optical bands. Laser induced heating of intermediary phononic modes
that facilitate this coupling significantly reduces the conversion efficiency. To date, optomechanical quantum trans-
duction yields the highest conversion efficiency of 47% [1].

Optomechanical transducers are composed of microwave and optical cavities coupled to a mechanical oscilla-
tor by a radiation pressure force. In a quantized setting the electromagnetic contributions are described using a
Hamiltonian,
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with quantized creation (annihilation) operators for phonon modes b†(b) and photon modes a†(a) coupled non-
linearly with an interaction strength g. The cavities are driven independently using an external electromagnetic
field to pump the photons with amplitude Ω, and the cavities are red-detuned (∆ j < 0) by the laser frequency
to enable cooling and photon-phonon exchange. The external field amplitudes can be modified in time using an
arbitrary waveform generator (AWG) to counteract noise and dissipation effects which has not been implemented
in current experimental platforms for optomechanical transducers.

2. Innovation

We created an original control model for optomechanical transducers using input-output theory,

ȧ = A(t)a+Bain (2)
aout =Ca+Dain, (3)
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Fig. 1. Optomechanical quantum transducer. The theoretical efficiency metric ζ is composed of the
cooperativity C of the two cavities.

to obtain the efficiency metric, ζ = aout/ain, with a time-dependent drive. We reproduce the results of Ref [1] in
simulation using the experimentally defined matrices A, B, C, D. Our model and simulation serves as a back end
data generator and theoretical benchmark for our DRL control framework.

We are the first research team to implement and demonstrate DRL control for quantum networks. Our DRL
framework is described by the actions an agent can take, the state of the system after the action, and the reward
the agent receives after taking an action based on the state.

• Actions - real and imaginary amplitudes of the microwave and optical driving fields.

• State/Observations - photon operator amplitudes and average cavity photon number.

• Reward - efficiency of microwave to optical signal throughput.

Using a DDPG Actor-Critic Reinforcement Learning algorithm with a continuous state space and a multi-discrete
action space we successfully trained an agent and demonstrated control with a trained neural network. Our research
demonstrate the agent can determine pulse sequencing that can push the conversion efficiency towards unity.

3. OFC Relevance

Research contributions in machine learning and AI for network control is a fast growing domain at OFC. OFC
is also seeing a growth in contributions in quantum networking with a quantum focused Rump Session expected
for OFC 2022. Our research couples these two domains and opens new avenues to innovate quantum networking
control protocols using AI tools.

4. Content and Implementation

We will conduct a live demonstration of our AI agent in action, delivering control solutions to optimize trans-
duction efficiency for microwave and optical cavities in the presence of damping and noise. We will contribute a
library of trained neural networks with different control schemes that attendees can run and test the robustness of
the control solution. The demo will consist of one large monitor to display the agent in training and the algorithm,
with an additional small monitor for the audience to interact with trained neural networks.
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