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Abstract: An algorithm based on point set operations is developed to solve the waveguide length-

balancing problem in silicon photonics layout. The method is applicable to complex photonic 

circuits incorporating multiple waveguide levels (e.g. Si and SiN).  

OCIS codes: (130.0250) Optoelectronics; (130.2790) Guided waves; (130.5990) Semiconductors; Guided waves; 

(130.1750) Components; (250.5300) Photonic integrated circuits; (250.3140) Integrated optoelectronic circuits 
 

1. Introduction 

As silicon photonics (SiPh) technology shows promise for high-speed integrated circuits (ICs), designers are in great 

need of automatic waveguide (WG) routing tools to facilitate their design cycle. Unlike automatic metal routing in 

electronic ICs, WG routing is more challenging due to additional restrictions to optimize the performance of photonic 

ICs (PICs), such as the length of the WG, the number of WG bends, and the guided modes and/or polarizations in the 

WG channel. Many commercial CAD vendors currently provide automatic WG routing tools focused on connecting 

one point to another using a given length and number of bends, while circumventing obstacles (e.g. other WGs or 

devices) [1-3]. Some additional WG routing methods are presented in [4] and [5] for specific applications. However, 

none of these methods demonstrate the ability to simultaneously balance the total length and number of bends in 

multiple WG paths.  

In this paper, an automatic WG length-balancing algorithm is presented which is based upon simple operations on 

sets of Cartesian coordinates ("point sets"). The algorithm presented here is useful in cases where multiple paths need 

to be connected to multiple devices [6], and it can be adapted to complex PICs containing multiple WG levels such as 

Si and SiN [7-9]. For example, the algorithm can find useful applications in the design of ILOTs (In-Line Optical 

Testing system) layouts for wafer-level testing [7], as well as LiDAR (Light Detection and Ranging) systems, both of 

which require balanced WG paths between input/output optical I/O and functional photonic components.  

2.  Waveguide Balancing Algorithm 

The problem of balancing multiple WG paths can be modeled, without loss of generality, as a rectangular box, with 

inputs and outputs on the left and top edges, respectively. All other cases can be viewed as rotations or cascaded 

composites of this base case. To further simplify the problem and to facilitate calculations on point sets, a discrete 

Cartesian grid is imposed on the box, such that the unit length is equal to two times the WG bend radius. All 

input/output points are then snapped (rounded) to this grid (Note that any input/output points which were initially off-

grid will be restored to their original positions in the last stage of the algorithm). The final step of initialization is, for 

each input point, to create a path pi connecting the input to its corresponding output using the minimum number of 

90-degree WG bends. The following sets are then created as shown in Table 1. 

Sets

P The set of all paths pi , initially indexed by length.  (Thus p1 is the 

shortest, p|P|  the longest.)

Ai
The set of all grid points on path pi

Bi
The set of all bend (corner) points on path pi 

Si
The set of all grid points on a unit square (thus |Si| = 4) which extends 

from bend point b ∈ Bi

K The set of differences ki between the number of bends in the bendiest 

path, and the number of bends in path pi

Integers

|P| The number of waveguide paths

 i The difference between the length of the longest path, and the length of 

path pi

ki The difference between the number of bends in the bendiest path, and the 

number of bends in path p

Rules

(Rule.1) Path Length-Difference Update: XOR(Bi, Si) updates  i by 2×(3 - |Ai ∩ 

Si|)

(Rule.2) |Bi ∩ Si| Lower/Upper Bounds: |Ai ∩ Si| - 2  ≤  |Bi ∩ Si|  ≤  |Ai ∩ Si|

(Rule.3) Number of Bends Update: XOR(Bi, Si) updates |Bi| by 2×(2 - |Bi ∩ Si|)

   

 

             Table 1. Definitions of Sets, Integers, and Rules             Fig 1. Flow diagram of the WG balancing algorithm  
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The proposed algorithm performs the following point set operations iteratively on each pi for i = 1 to N, until ki = 

0 for all ki ∈ K, and li ≤ 1; i.e. until all WG paths have the same number of bends and a length difference of no more 

than one unit length:  

(1) When li > 1, apply (Rule.1) and (Rule.3) to find a unit square Si which increases the total length without 

increasing the number of bends; i.e. |Ai ∩ Si| = 2 ∧ |Bi ∩ Si| = 2. In the case where the initial placement of WGs is 

too close, find Si in a direction which increases both the total length and the number of bends, i.e. |Ai ∩ Si| = 2 ∧ |Bi 

∩ Si| = 1.  

 (2) When max(K) > ki at pi, find Si such that |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 1 in order to increase the number of bends 

while maintaining the path length. When there is not enough room to re-form the path, an Si will not be found. Instead, 

find an Si satisfying |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 2. This condition guarantees the current path is re-formed without any 

changes in either the total length or the number of bends. In the next iteration, the number of bends is examined again.  

(3) If neither of conditions (1) or (2) are met, search for Si satisfying the condition |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 2. 

The purpose of this step is to give sufficient room for extending other paths.  

Iterating the above point set operations results in all paths having the same number of bends, but a difference in 

total WG length may still exist due to the initial snapping of the input/output points to the grid. By recalling that all 

of the final WG paths are spaced at least one unit length apart, it is easily proved that restoring snapped input/output 

points to their original positions will not overlap other WG paths. Therefore, merely shifting the balanced paths and 

extending straight WGs at the input and output points, will resolve the quantization error from grid approximation. 

An additional benefit of this proposed method is that it can be directly applied to the case of “heterogeneous WG” 

paths or WGs formed at multiple levels with different materials; e.g., a WG path consisting of alternating segments 

of different WG materials such as Si and SiN. Paths are already quantized by unit length segments of grid after the 

iterations have finished but before executing the last step of correcting approximation errors. Therefore, using the set 

Ai of grid points of path pi, the location and number of segments of path pi may be determined and even replaced with 

other types of WGs. WG path balance is maintained by replacing the same number of segments on all paths pi ∈ P.  

The complete flow of operations are described in Fig. 1. 

3.  Example Cases 

Fig. 2 illustrates the flow of the WG balancing algorithm, starting from an initial state with four inputs and outputs as 

shown in Fig. 3(a). The WGs are shown in green.  The green-and-red triangular shapes on the left edge (inputs) are 

the grating couplers.  Unit squares are shown in orange.  Each WG bend is one unit square in length.   

At initialization, there is no unit square Si which can be added to p1 , p2 , and p3  to increase length without also 

adding bends. Therefore, each path with li > 1 (viz. p1 , p2 , p3 ) has to increase both its length and number of bends.  

So the maximum number of bends is incremented by two, and two bends are added to the longest path (p4) without 

increasing its length, using unit squares Si, shown in orange in Fig. 2(a).  Two bends are also added to p1 , p2 , and p3, 

and their lengths are increased. At this stage, Fig. 2(a) shows p3 now matching p4 in length and number of bends, but 

p1 and p2 do not have sufficient routing area to match the length of p4. To further increase the lengths of the shorter 

paths p1 and p2, additional bends are required, while the lengths of paths p3 and p4 already match, requiring only 

additional bends. Thus, paths p3 and p4 are re-formed as shown in Fig. 2(b). Now the lengths of paths p2, p3, and p4 

are balanced, and only the length of path p1 needs to be increased in order to complete the balancing.  Since p1 cannot 

be further stretched to the left, additional bends need to be added to all paths.  However, p3 and p4 must be re-formed 

to accommodate additional bends, such that the bends do not increase length. This re-formation is shown in Fig. 2(c), 

and the additional bends are subsequently added to p3 and p4 in Fig. 2(d).  At last, p1 can grow vertically until it 

achieves the required length, and all paths are balanced. 

Fig. 3 shows a summary of this work, a comparison between paths that were manually balanced, and paths balanced 

automatically using the proposed method, evaluated in the Cadence® Virtuoso® Design Environment's SKILL 

programming language. An example case study of an ILOTs layout is shown in Fig. 3(b) [7].  Fig. 3(a) shows the 

initialized state of the algorithm: All four given paths are drawn on the unit grid with the minimum number of bends. 

Note that the first number of bends can differ among each path depending on the positions of input/outputs (not 

pictured). Algorithmically-balanced paths are shown in Fig. 3(c). Each orange square in the figure is equivalent to a 

point set Si and indicates how point set operations were performed during iteration. The resulting balanced paths in 

Fig. 3(c), compared to the manually-balanced paths in Fig. 3(b), are ~50 𝜇m shorter in length and have one less bend. 

It can be claimed as another advantage of this method that resultant paths have shorter lengths and fewer bends unless 
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a certain length and a certain number of bends are required for the designer to introduce additional loss as desired. It 

is possible to create paths with given lengths by giving offset values to li. 

Finally, Fig. 3(d) shows the algorithm applied to the heterogeneous case of a path containing Si and SiN WGs. 

Green lines represent crystallized silicon WG, and pink lines represent SiN (with implied taper connection).  

One challenge of balancing out WG path lengths is that there may exist many different or no solutions, depending 

on the area through which paths are allowed to route. The proposed method produces a solution only if there is enough 

room to route, given the number of paths |P| and the placement of the inputs and outputs. Hence there are some 

limitations to this method, including optimizing area efficiency, finding the absolute minimum number of bends, the 

absolute shortest total length, and determining whether any solution exists at all. We are currently developing 

improved algorithms to overcome these limitations. 
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Fig. 2. WG balancing flow.    Fig. 3. Examples of balanced WG paths  

for different cases. 

4.  Summary 

We present a WG-balancing algorithm for point-to-point routing scenarios involving multiple WG paths (e.g., from 
input or output grating couplers to the input or output of photonic devices), aiming to generate balanced routes without 
manual intervention. In the ILOTs layout test case, the algorithm was even able to find a solution with a shorter total 
length compared to manual balancing. Currently, phase-aware routing is mostly done manually or using a dedicated 
script [10]. The method presented here improves upon the current practice in that it provides a general solution to the 
phase-aware routing problem which can be applied to different types of circuits with varying topologies. 
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