
Automatic Waveguide Balancing Using Point Set Operations

Won Suk Lee*, Yusheng Bian*, Thomas Weeks III, Michal Rakowski, Francis O Afzal, Takako Hirokawa,

Asif Chowdhury, Rod Augur, Jae Gon Lee, Alexander Martin and Ken Giewont
GlobalFounrdries, 400 Stone Break Rd Extension, Malta, NY 12020, USA

*These authors contributed equally to this work

*wonsuk.lee@globalfoundries.com; yushengbian@globalfoundries.com

Abstract: An algorithm based on point set operations is developed to solve the waveguide length-

balancing problem in silicon photonics layout. The method is applicable to complex photonic

circuits incorporating multiple waveguide levels (e.g. Si and SiN).

OCIS codes: (130.0250) Optoelectronics; (130.2790) Guided waves; (130.5990) Semiconductors; Guided waves;

(130.1750) Components; (250.5300) Photonic integrated circuits; (250.3140) Integrated optoelectronic circuits

1. Introduction

As silicon photonics (SiPh) technology shows promise for high-speed integrated circuits (ICs), designers are in great

need of automatic waveguide (WG) routing tools to facilitate their design cycle. Unlike automatic metal routing in

electronic ICs, WG routing is more challenging due to additional restrictions to optimize the performance of photonic

ICs (PICs), such as the length of the WG, the number of WG bends, and the guided modes and/or polarizations in the

WG channel. Many commercial CAD vendors currently provide automatic WG routing tools focused on connecting

one point to another using a given length and number of bends, while circumventing obstacles (e.g. other WGs or

devices) [1-3]. Some additional WG routing methods are presented in [4] and [5] for specific applications. However,

none of these methods demonstrate the ability to simultaneously balance the total length and number of bends in

multiple WG paths.

In this paper, an automatic WG length-balancing algorithm is presented which is based upon simple operations on

sets of Cartesian coordinates ("point sets"). The algorithm presented here is useful in cases where multiple paths need

to be connected to multiple devices [6], and it can be adapted to complex PICs containing multiple WG levels such as

Si and SiN [7-9]. For example, the algorithm can find useful applications in the design of ILOTs (In-Line Optical

Testing system) layouts for wafer-level testing [7], as well as LiDAR (Light Detection and Ranging) systems, both of

which require balanced WG paths between input/output optical I/O and functional photonic components.

2. Waveguide Balancing Algorithm

The problem of balancing multiple WG paths can be modeled, without loss of generality, as a rectangular box, with

inputs and outputs on the left and top edges, respectively. All other cases can be viewed as rotations or cascaded

composites of this base case. To further simplify the problem and to facilitate calculations on point sets, a discrete

Cartesian grid is imposed on the box, such that the unit length is equal to two times the WG bend radius. All

input/output points are then snapped (rounded) to this grid (Note that any input/output points which were initially off-

grid will be restored to their original positions in the last stage of the algorithm). The final step of initialization is, for

each input point, to create a path pi connecting the input to its corresponding output using the minimum number of

90-degree WG bends. The following sets are then created as shown in Table 1.

Sets

P The set of all paths pi , initially indexed by length. (Thus p1 is the

shortest, p|P| the longest.)

Ai
The set of all grid points on path pi

Bi
The set of all bend (corner) points on path pi

Si
The set of all grid points on a unit square (thus |Si| = 4) which extends

from bend point b ∈ Bi

K The set of differences ki between the number of bends in the bendiest

path, and the number of bends in path pi

Integers

|P| The number of waveguide paths

 i The difference between the length of the longest path, and the length of

path pi

ki The difference between the number of bends in the bendiest path, and the

number of bends in path p

Rules

(Rule.1) Path Length-Difference Update: XOR(Bi, Si) updates i by 2×(3 - |Ai ∩

Si|)

(Rule.2) |Bi ∩ Si| Lower/Upper Bounds: |Ai ∩ Si| - 2 ≤ |Bi ∩ Si| ≤ |Ai ∩ Si|

(Rule.3) Number of Bends Update: XOR(Bi, Si) updates |Bi| by 2×(2 - |Bi ∩ Si|)

 Table 1. Definitions of Sets, Integers, and Rules Fig 1. Flow diagram of the WG balancing algorithm

Maintain # of bends;

increase length by 2

(∀ki∈K [ki=0]) ∧
(li ≤ 1for i=1 to |P|)

END

TRUE

FALSE

∃pi [max(K) > ki]
TRUE

FALSE

TRUE

FALSE

START

∃pi [li > 1]

Balance Length

Balance Bends

Reform path within

the boundary area

|Ai ∩ Si| = 2
∧ |Bi ∩ Si| = 2

Space to
increase length
without adding

bends?

TRUE

FALSE

|Ai ∩ Si| = 2
∧ |Bi ∩ Si| = 1

|Ai ∩ Si| = 3
∧ |Bi ∩ Si| = 2

Space to reform
the path without
adding bends?

TRUE

FALSE

|Ai ∩ Si| = 2
∧ |Bi ∩ Si| = 2

|Ai ∩ Si| = 3
∧ |Bi ∩ Si| = 2

Reform path within

the boundary area

Maintain length;

add 2 bends

Increase length and

of bends by 2

M3E.2 OFC 2022 © Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

mailto:*wonsuk.lee@globalfoundries.com
mailto:yushengbian@globalfoundries.com

The proposed algorithm performs the following point set operations iteratively on each pi for i = 1 to N, until ki =

0 for all ki ∈ K, and li ≤ 1; i.e. until all WG paths have the same number of bends and a length difference of no more

than one unit length:

(1) When li > 1, apply (Rule.1) and (Rule.3) to find a unit square Si which increases the total length without

increasing the number of bends; i.e. |Ai ∩ Si| = 2 ∧ |Bi ∩ Si| = 2. In the case where the initial placement of WGs is

too close, find Si in a direction which increases both the total length and the number of bends, i.e. |Ai ∩ Si| = 2 ∧ |Bi

∩ Si| = 1.

 (2) When max(K) > ki at pi, find Si such that |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 1 in order to increase the number of bends

while maintaining the path length. When there is not enough room to re-form the path, an Si will not be found. Instead,

find an Si satisfying |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 2. This condition guarantees the current path is re-formed without any

changes in either the total length or the number of bends. In the next iteration, the number of bends is examined again.

(3) If neither of conditions (1) or (2) are met, search for Si satisfying the condition |Ai ∩ Si| = 3 ∧ |Bi ∩ Si| = 2.

The purpose of this step is to give sufficient room for extending other paths.

Iterating the above point set operations results in all paths having the same number of bends, but a difference in

total WG length may still exist due to the initial snapping of the input/output points to the grid. By recalling that all

of the final WG paths are spaced at least one unit length apart, it is easily proved that restoring snapped input/output

points to their original positions will not overlap other WG paths. Therefore, merely shifting the balanced paths and

extending straight WGs at the input and output points, will resolve the quantization error from grid approximation.

An additional benefit of this proposed method is that it can be directly applied to the case of “heterogeneous WG”

paths or WGs formed at multiple levels with different materials; e.g., a WG path consisting of alternating segments

of different WG materials such as Si and SiN. Paths are already quantized by unit length segments of grid after the

iterations have finished but before executing the last step of correcting approximation errors. Therefore, using the set

Ai of grid points of path pi, the location and number of segments of path pi may be determined and even replaced with

other types of WGs. WG path balance is maintained by replacing the same number of segments on all paths pi ∈ P.

The complete flow of operations are described in Fig. 1.

3. Example Cases

Fig. 2 illustrates the flow of the WG balancing algorithm, starting from an initial state with four inputs and outputs as

shown in Fig. 3(a). The WGs are shown in green. The green-and-red triangular shapes on the left edge (inputs) are

the grating couplers. Unit squares are shown in orange. Each WG bend is one unit square in length.

At initialization, there is no unit square Si which can be added to p1 , p2 , and p3 to increase length without also

adding bends. Therefore, each path with li > 1 (viz. p1 , p2 , p3) has to increase both its length and number of bends.

So the maximum number of bends is incremented by two, and two bends are added to the longest path (p4) without

increasing its length, using unit squares Si, shown in orange in Fig. 2(a). Two bends are also added to p1 , p2 , and p3,

and their lengths are increased. At this stage, Fig. 2(a) shows p3 now matching p4 in length and number of bends, but

p1 and p2 do not have sufficient routing area to match the length of p4. To further increase the lengths of the shorter

paths p1 and p2, additional bends are required, while the lengths of paths p3 and p4 already match, requiring only

additional bends. Thus, paths p3 and p4 are re-formed as shown in Fig. 2(b). Now the lengths of paths p2, p3, and p4

are balanced, and only the length of path p1 needs to be increased in order to complete the balancing. Since p1 cannot

be further stretched to the left, additional bends need to be added to all paths. However, p3 and p4 must be re-formed

to accommodate additional bends, such that the bends do not increase length. This re-formation is shown in Fig. 2(c),

and the additional bends are subsequently added to p3 and p4 in Fig. 2(d). At last, p1 can grow vertically until it

achieves the required length, and all paths are balanced.

Fig. 3 shows a summary of this work, a comparison between paths that were manually balanced, and paths balanced

automatically using the proposed method, evaluated in the Cadence® Virtuoso® Design Environment's SKILL

programming language. An example case study of an ILOTs layout is shown in Fig. 3(b) [7]. Fig. 3(a) shows the

initialized state of the algorithm: All four given paths are drawn on the unit grid with the minimum number of bends.

Note that the first number of bends can differ among each path depending on the positions of input/outputs (not

pictured). Algorithmically-balanced paths are shown in Fig. 3(c). Each orange square in the figure is equivalent to a

point set Si and indicates how point set operations were performed during iteration. The resulting balanced paths in

Fig. 3(c), compared to the manually-balanced paths in Fig. 3(b), are ~50 𝜇m shorter in length and have one less bend.

It can be claimed as another advantage of this method that resultant paths have shorter lengths and fewer bends unless

M3E.2 OFC 2022 © Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

a certain length and a certain number of bends are required for the designer to introduce additional loss as desired. It

is possible to create paths with given lengths by giving offset values to li.

Finally, Fig. 3(d) shows the algorithm applied to the heterogeneous case of a path containing Si and SiN WGs.

Green lines represent crystallized silicon WG, and pink lines represent SiN (with implied taper connection).

One challenge of balancing out WG path lengths is that there may exist many different or no solutions, depending

on the area through which paths are allowed to route. The proposed method produces a solution only if there is enough

room to route, given the number of paths |P| and the placement of the inputs and outputs. Hence there are some

limitations to this method, including optimizing area efficiency, finding the absolute minimum number of bends, the

absolute shortest total length, and determining whether any solution exists at all. We are currently developing

improved algorithms to overcome these limitations.

Grating coupler Si layer SiN layer

(a) Increase both

of length and

bends in p1, p2,

and p3. Add bends

to p4.

(b) Increase both of

length and bends in

p1 and p2. Add

bends to p3 and p4.

(c) Increase both of

length and bends in

p1. Add bends to p2

and reform path p3

and p4.

(d) Increase

length in p1. Add

bends to p3 and

p4.

(a) Initialization

Unbalanced

(b) Manual

balancing

(c) Automatic

balancing

(d) Automatic

balancing

(heterogeneous)

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

Fig. 2. WG balancing flow. Fig. 3. Examples of balanced WG paths

for different cases.

4. Summary

We present a WG-balancing algorithm for point-to-point routing scenarios involving multiple WG paths (e.g., from
input or output grating couplers to the input or output of photonic devices), aiming to generate balanced routes without
manual intervention. In the ILOTs layout test case, the algorithm was even able to find a solution with a shorter total
length compared to manual balancing. Currently, phase-aware routing is mostly done manually or using a dedicated
script [10]. The method presented here improves upon the current practice in that it provides a general solution to the
phase-aware routing problem which can be applied to different types of circuits with varying topologies.

5. References

[1] A. Boos, L. Ramini, U. Schlichtmann and D. Bertozzi, "PROTON: An automatic place-and-route tool for optical Networks-on-Chip," 2013

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, pp. 138-145 (2013).

[2] J. S. Orcutt and R. J. Ram, "Photonic Device Layout Within the Foundry CMOS Design Environment," in IEEE Photonics Technology Letters,
vol. 22, no. 8, pp. 544-546 (2010).

[3] C. Y. Lee, "An Algorithm for Path Connections and Its Applications," in IRE Transactions on Electronic Computers, vol. EC-10, no. 3, pp.

346-365 (1961).
[4] A. Annoni et al., "Automated Routing and Control of Silicon Photonic Switch Fabrics," in IEEE Journal of Selected Topics in Quantum

Electronics, vol. 22, no. 6, pp. 169-176 (2016).

[5] T. Krishna et al., "Automatic place-and-route of emerging LED-driven wires within a monolithically-integrated CMOS−III-V process," Design,
Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, pp. 344-349 (2017).

[6] N. Bai et al., "Mode-division multiplexed transmission with inline few-mode fiber amplifier," Opt. Express 20, 2668-2680 (2012).

[7] K. Giewont et al., "300-mm Monolithic Silicon Photonics Foundry Technology," in IEEE Journal of Selected Topics in Quantum Electronics,
vol. 25, no. 5, pp. 1-11 (2019).

[8] Y. Bian et al., “Monolithically integrated silicon nitride platform,” in Opt. Fiber Commun. Conf., Th1A.46 (2021).

[9] Y. Bian et al., “Towards low-loss monolithic silicon and nitride photonic building blocks in state-of-the-art 300mm CMOS foundry”, in OSA
Frontiers in optics/Laser science, FTu6E.3 (2020).

[10] W. Bogaerts and L. Chrostowski, “Silicon Photonics Circuit Design: Methods, Tools and Challenges,” Laser Photonics Rev. 12(4), 1700237

(2018).

M3E.2 OFC 2022 © Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

