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Abstract: Here we demonstrate a photonic tensor core based on a silicon photonics dot-product 

engine. Utilizing compact electronic phase-change-material based photonic memory and WDM we 

show the highest throughput density to date of 3.8 MAC/s/mm2. © 2022 The Author(s)  

1. Introduction 

With the exponentially increasing amounts of data and the rapid development of artificial intelligence, the high 

throughput, short latency, and parallelized computing hardware is critical [1]. The critical operation of convolutions 

(conv) makes for about >90% of all machine learning (ML) compute effort [2-3]. The fundamental reason of why 

conv processing is demanding is the high mathematical runtime complexity scaling with (N-K)2, where N is the data 

input and kernel matrix sizes, respectively (assuming squared matrices). For classification ML tasks the kernel is 

quasi static requiring rare kernel weight updating. Hence, for improved power efficiency, photonic ASICs should 

include compute-in-memory functionality to eliminate memory-access bottlenecks known from van-Neuman 

systems. In fact, a brief analysis shows a ~100x superior potential of photonic memory over state-of-art SRAM with 

respect to data baud rate (speed) and memory access energy; in brief, an SRAM has an access latency of 0.3ns and 

costing about 100fJ/access [4]. A photonic memory based on phase-chance-materials (PCM), once WRITTEN, 

requires only the photon creation and detection energies. The minimum power of foundry-based PIC detectors in the 

C-band, for example, are about 50nW for signals above 30GHz. Assuming a 1% for the laser wall-plug efficiency 

and optical losses on the PIC and coupling to the PIC (~2dB per coupler, PWB [5]), a memory READ (access) 

energy of a PCM-written photonic random-access memory (P-RAM) takes <1fJ/access for OOK signal at 30GHz 

data rates, or ~10fJ/access for a higher bit resolution (e.g., PAM16 for a 4-bit ML classifier). Thus, a generic photonic 

link offers MAC operations and memory access of 100x higher MAC/s/J/access than SRAM. Following this potential 

for PIC-based MAC acceleration, electro-optic reconfigurable photonic integrated circuits (PIC) have been predicted 

and demonstrated [6-7] to process the repeating conv-underlying MAC operation (multiply-accumulate) in inference 

tasks on off-chip trained kernels. Specifically, utilizing fiber 

optical-based discrete components (non-PIC based) [8] and 

PIC-based [9] demonstrations show the possibility for efficient 

photonic MAC and hence conv acceleration. Photonic tensor 

processors are bound by the same system integration-

performance scaling laws as electronic ASICs (Fig. 1); 

demonstrated MAC throughputs are 11.3 TOPS and 2 TOPS for 

these two prototypes. However, each falls short with respect to 

a) chip density or system compactness, and b) electronic control 

of the PIC. In the former case, no PICs were deployed. A system 

based on discretely packaged components of the shelf (COTS) 

is not only bulky, but also costly, prone to errors and hence does 

not offer much to for scaling up the number of matrix-size in 

the optical neural networks (ONN), as Infinera arguably 

demonstrated over a decade ago already. The second 

shortcoming of former work is to rely on an optical signal to 

program the P-RAMs. That is, requiring multiple lasers and 

having to ensure on complex waveguide routing is not only 

cumbersome, but leads to reduced throughput density 

(TOPS/mm2) and makes the use of optical MAC processing questionable since electronic signal triggers for these 

optical WRITE cycles must be used anyhow.  

To address both high MAC operation photonic ASPIC efficiency and compact system design, here we demonstrate 

the first photonic tensor core processor based on our previous design [10], which features electronically written P-

RAM and compute-in-memory on-chip elements (Fig. 2). This photonic tensor core ASIC utilizes a one-dimensional 

degree-of-freedom multiplexer, namely WDM, to enable a N runtime complexity vector-matrix multiplier (VMM). 

 Fig.1. Photonic ASIC system performance improves 
with degree of integration. Here we introduce a photonic  
tensor core ASIC processor to accelerate MAC 
operations featuring electronic-on-chip programmable 
photonic random access memories (P-RAM).   
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Note, the matrix is the kernel stored in an array of P-RAMs and the N steps are determined by N wavelengths (hence 

VMM and not MM, matrix-matrix multiplier). The P-RAM are electro-thermally programed and feature not GST 

(Ge2Sb2Te5), which is too lossy at the C-band, as non-volatile kernel weights, but GeSbSe (GSSe) instead. At 1550 

nm wavelength, the GSSE has a significantly lower absorption coefficient (2.0×10-4) compared to GST (0.19) [11], 

which can significantly reduce the power consumption of our PTC system. Overall, this photonic tensor processor 

based on low-loss P-RAMs offers higher highest TOP/J/mm2 as compared to previous demonstrations.  

Here, we develop and demonstrate a highly integrated photonic tensor core based on non-volatile photonic memory 

by using phase change material (GeSbSe, GSSE). Our weight is built by depositing 3 stripes of GSSE with the same 

dimension on the top of the waveguide. By using the tungsten heater, the GSSE is switched between the amorphous 

and crystalline states. The absorption coefficient difference between the two states leads to the intensity change of 

light. By independently controlling the state of the 3 GSSE strip, the 2-bits weight with a total 1 dB extinction ratio 

(ER) is achieved.  

2.  Results and Discussion 

2.1. Results 

For performing matrix-vector multiplication (MVM), each element of a resulting matrix D is obtained through dot 

product (elementwise multiplication and summation) of each row of B by the vector A. We map this operation 

directly into the photonic hardware. The input vector A is encoded onto different wavelengths which are modulated 

by high-speed EOMs. Each wavelength is successively isolated by ring resonator (Fig.2d) and effortlessly weighted 

according to the tunable absorption coefficient of a multistate photonic memories (Fig.2c), which stores the element 

of the rows of the kernel B. The elements of B can be written via Joule heating and stored with no further power 

consumption. The P-RAM comprise an array of phase change material (GSSe) whose states are individually 

controlled by on-chip tungsten heaters. The number of GSSe stripes represent the number of bit-1 used for 

representing the kernel elements. After multiplications, light is detected by a high-speed photodetector, which 

performs the summation across wavelengths in the linear domain (Fig.2a). 

We exemplary fabricated a 1×3 MVM that can be achieved by 3×3 photonic random-access memories (P-RAM) 

(Fig.2b). Here, we utilize a compact 2 micrometer PCM pads design resulting in an ER of ~1.0 dB or 0.5dB/μm 

(Fig.3b), which is one of the most area-efficient designs to date[4]. Extending the PCM strip size allows for a) higher 

ER such as 10dB for 20 micrometers, and b) also enabling multi-state programmability with a single control voltage 

pulse. We initialize the E-PTC by tuning the MRRs to achieve an equal output power on each wavelength channel. 

This accounts for the resonance frequency mismatch between MRR pairs to account for fabrication variances (Fig. 

3a). 

To compensate for the difference insertion loss of MMR, the 8 dB insertion loss as the initial power level is selected 

and adjusted by tuning the wavelength of injecting laser. The result of multi-time tuning does not affect the target 

power level at a significant level. To analyze the computational accuracy of the silicon photonics-based MVM 

Fig.2. (a) Photonic tensor core architecture. (b). Optical micrograph of a fabricated 1×3 matrix. (c) The SEM image of PCM and heater. (d) 
The SEM image of  micro-ring resonator (MMR) 
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operation, a randomly chosen 1×3 vector is processed using the different configuration kernels, and compared with 

the expected analytically calculated multiplication result. The normalized results from the E-PTC for 10000 MAC 

operations show the standard deviation of 0.019 and the mean value of 0.0016 (Fig. 3c). The fitted line shows the 

measured results well correspond with expected. 

2.2. Discussion 

We have shown a photonic tensor core based on photonic dot-product engine and demonstrated the photonic dot-

production engine with P-RAM enables parallelizing MAC operations with 2 bits resolution of weight. The standard 

deviation of 0.019 and mean of 0.0016 of 10000 MAC operation test shows low error rate and stability of our PTC. 
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Fig.3. Measured (a) Spectrum, (b) bit resolution, and (c) accuracy of the 1×3 MVM kernal 
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