

1

Agenda	
 Today: fibers, systems, networks 	
Fiber innovation pathwaysImplications on system and network design	
Abstract: We will review drivers behind innovation in long-haul and subsea optical fiber technology and potential paths in which these fibers could evolve. We will also discuss the ecosystem changes required for each future fiber pathway.	

Long-haul fibers today Fibers from all vendors are designed to be compliant with ITU-T standards									
		at 1550 nm							
	ITU-T Category	Application	Loss, typ. (dB/km)	A _{eff} , typ. (µm²)	CD, typ. (ps/nm/km)	Cable cut-off λ, max. (nm)			
	G.652.D	Terrestrial							
	G.655	Terrestrial							
	G.656	Terrestrial							
	G.654.B	Subsea							
	G.654.C	Both							
	G.654.D	Subsea							
	G.654.E	Terrestrial							
CORNII	CORNING © 2022 Corning Incorporated 5								

5

at 1550 nm						
	ITU-T Category	Application	Loss, typ. (dB/km)	A _{eff} , typ. (µm²)	CD, typ. (ps/nm/km)	Cable cut-off λ , max. (nm)
	G.652.D	Terrestrial	0.18 - 0.20			
	G.655	Terrestrial	0.19 - 0.22			
	G.656	Terrestrial	0.20 - 0.22			
	G.654.B	Subsea	0.15 - 0.17			
	G.654.C	Both	0.15 - 0.17			
	G.654.D	Subsea	0.15 - 0.17			
	G.654.E	Terrestrial	0.16 - 0.18			

Lon Fiber	Long-haul fibers today Fibers from all vendors are designed to be compliant with ITU-T standards								
	at 1550 nm								
	ITU-T Category	Application	Loss, typ. (dB/km)	A _{eff} , typ. (µm²)	CD, typ. (ps/nm/km)	Cable cut-off λ, max. (nm)			
	G.652.D	Terrestrial	0.18 - 0.20	~80					
	G.655	Terrestrial	0.19 - 0.22	50 - 72					
	G.656	Terrestrial	0.20 - 0.22	50 - 72					
SSO	G.654.B	Subsea	0.15 - 0.17	110 - 115					
_ ≥	G.654.C	Both	0.15 - 0.17	~80					
- Lo	G.654.D	Subsea	0.15 - 0.17	110 - 150					
JItra	G.654.E	Terrestrial	0.16 - 0.18	110 - 130					
CORNI	CORNING © 2022 Corning Incorporated 7								

7

at 1550 nm						
l' C	TU-T Category	Application	Loss, typ. (dB/km)	A _{eff} , typ. (µm²)	CD, typ. (ps/nm/km)	Cable cut-off λ , max. (nm)
Ģ	G.652.D	Terrestrial	0.18 - 0.20	~80	16-18	
Ģ	G.655	Terrestrial	0.19 - 0.22	50 - 72	~4	
G	G.656	Terrestrial	0.20 - 0.22	50 - 72	~8	
C	G.654.B	Subsea	0.15 - 0.17	110 - 115	20 - 22	
C	G.654.C	Both	0.15 - 0.17	~80	16 - 18	
C	G.654.D	Subsea	0.15 - 0.17	110 - 150	20 - 22	
C	G.654.E	Terrestrial	0.16 - 0.18	110 - 130	20 - 22	

Lon Fibe	Long-haul fibers today Fibers from all vendors are designed to be compliant with ITU-T standards at 1550 nm								
	Category		(dB/km)	(μm^2)	(ps/nm/km)	λ , max. (nm)			
	G.652.D	Terrestrial	0.18 - 0.20	~80	16-18	1260			
	G.655	Terrestrial	0.19 - 0.22	50 - 72	~4	1450			
	G.656	Terrestrial	0.20 - 0.22	50 - 72	~8	1450			
SSO	G.654.B	Subsea	0.15 - 0.17	110 - 115	20 - 22	1530			
_ ≥	G.654.C	Both	0.15 - 0.17	~80	16 - 18	1530			
	G.654.D	Subsea	0.15 - 0.17	110 - 150	20 - 22	1530			
ltra	G.654.E	Terrestrial	0.16 - 0.18	110 - 130	20 - 22	1530			
CORNI	Source: compilation of data from ITU standards and specifications from several fiber vendors © 2022 Corning Incorporated								

Disclaimer: Preliminary paper, subject to publisher revision

Key points thus far...

• Transmission systems have continuously evolved throughout history - fibers adapted and made remarkable progress

M2C.1

- Bandwidth needs to continue to grow but SNR increase alone is no longer sufficient (pivot to a mix of SNR and N, maybe B)
- New architecture trends make networks more inter-dependent (integration of terrestrial with subsea)

CORNING	© 2022 Corning Incorporated	13

13

17

33

37

© 2022 Corning Incorporated

Further thoughts...

- First-generation of smaller fibers (200 µm coating) are already being used in long-haul terrestrial networks, and are coming to subsea next
- Further small reductions in size are possible (180-190 µm coating diameter), perhaps only with modest changes to ecosystem
- More significant reduction in size are likely to require some compromises (e.g., splicing, bend, loss, strength, cable design)
 - Currently not clear what the practical limit is on fiber size for long-haul terrestrial and subsea systems
 - Answer may be different for non long-haul applications

C	O'	DI	NTI	INT	C
	•	K	N	IN	UT.

37

39

Hero transmission experiments using FMF and MCF

List of some recent examples

 B. Puttnam, "0.715 Pb/s transmission over 2009.6 km in 19-core cladding pumped EDFA amplified MCF link", OFC 2019

M2C.1

- G. Rademacher, "172 Tb/s C+L band transmission over 2040 km strongly coupled 3-core fiber", OFC 2020
- G. Rademacher, "10.66 Peta-Bit/s transmission over a 38-core-three-mode fiber", OFC 2020
- R. Essiambre, "First transmission of a 12D format across three coupled spatial modes of a 3core coupled core fiber at 4 bits/s/Hz", OFC 2020
- G. Rademacher, "1.01 Peta-bit/s C+L-band transmission over 15-mode fiber", ECOC 2020
- B. Puttnam, "319 Tb/s transmission over 3001 km with S, C and L band signals over >120 nm bandwidth in a 125um 4-core fiber", OFC 2021

CORNING

© 2022 Corning Incorporated 43

43

ITU SDM Technical Report brings industry leaders together to determine SDM development roadmap

Question(s):	VIERNATIONAL TELECOMMUNICATION UNION TELECOMMUNICATION TEADARDIZATION SECTOR TUDY PERIOD 2017-2020 5/15 CONTRIB NTT. CLPAI KDDI. NEC	WD5-2 STUDY GROUP 15 Original: English E-Meeting 6-17 December 2021 UTION	•	Purpose: to establish clear and agreed upon roadmap for SDM optical fiber and cable technologies
Title: <u>Purpose:</u> Contact: Contact:	Proposal for draft TR.sdm Proposal Kazuhide Nakajima NTT Japan Yoshinori Yamamoto	Tel: +81 29 868 6442 Fax: +81 29 868 6440 E-mail: kazuhide nakajima gr@hco ntt co.jp Tel: +81 45 x83-7267		 Incl. test methods, connectivity, maintenance and restoration
Contact: Contact:	CLPAJ Japan Yuki Niiyama CLPAJ Japan Tsukasa Hosokawa CLPAJ	Fax: +81 45-851-0935 E-mail: yamamoto-yoshinori@sei.co.jp Tel: +81-80-1000-6144 Fax: +81-3-6281-8659 E-mail: yuki nijwam@furukawaelectric.com Tel: +81 43-484-2197 Fax: +81 43-481-210	•	Scope:MCF, FMF, and other SDM options
Contact:	Japan Yuta Wakayama KDDI Corporation Japan Takanori Inoue	E-mail: tsukasa.hosokawa@gp.fujukura.com Tel: +81 70-3508-5774 Fax: E-mail: yu-wakayama@kddi.com Tel: +81-80-8456-5878		 Evaluation of geometrical, mechanical and optical properties
Keywords: Abstract:	NEC Japan Technical report, space division mu This contribution proposes some no TR.sdm.	E-mail: t-inoue_jm@nec.com		 Examination of application areas
NING	Source: ITU-T S	SDM Technical Report,	Decen	nber 2021 draft © 2022 Corning Incorporated 44

45

© 2022 Corning Incorporated

What must happen for multi-core (MCF) and few-mode (FMF) fibers to be successful in long-haul?

M2C.1

- Terrestrial: do we really have a transmission capacity bottleneck?
 - 50 Tb/s C+L fiber capacity x # fibers (192-864fc): up to 21.6 Eb/s route capacity (compare with traffic matrix roadmap)
 - Subsea is different: # fibers is much smaller
- Large-scale manufacturability with consistent quality must be proven
- · Cost per bit on par or better than single-core fiber
 - Low end-to-end loss (fiber attenuation, fanouts, mode MUX/DEMUX)
 - Low manufacturing cost
- Developed measurement techniques and seamless splicing, MCF or FMF-EDFA a strong bonus
- Redeveloped DSP for strongly-coupled MCF (challenging) or FMF

CORNING

45

51

