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Abstract: We summarize recent developments in neuromorphic photonics, including our work and 

the advances it brings beyond the state-of-the-art demonstrators in terms of architectures, 

technologies, and training models for a synergistic hardware/software codesign approach. 

 

1. Introduction 

In a rush to harness the potential of Artificial Intelligence (AI) and Deep Learning (DL), optics became a widely 

studied platform for computational tasks, especially as photonic integration is entering its mature stage [1]. The low-

latency, -energy, and -footprint, together with tunability, allow the photonic devices to carry out Multiply-Accumulate 

(MAC) operations, with a predicted computational energy and area efficiency of a few fJ/MAC and >TMAC/sec/mm2, 

respectively [2, 3]. To meet these goals, all constituent scientific and technological fields – from device design and 

architectures to DL training models – need to be considered in a synergistic co-design and co-development roadmap. 

In this article we present a summary of the progress made in neuromorphic photonic building blocks, towards 

sustaining higher on-chip compute rates within low-power and small-size envelope, along with the associated 

challenges that emerge. Motivated by advances in the field of analog electronic in-memory computing, we present 

neuromorphic optical architectures, able to operate as universal linear operators [4], that outperform the state-of-the-

art neuromorphic photonic engines in terms of compute rate efficiency and accuracy performance. We also share our 

recent experimental demonstrations of feed-forward coherent photonic neural networks (NNs) employed in Modified 

National Institute of Standards and Technology (MNIST) handwritten digit recognition dataset [5-8], unveiling how 

hardware-aware training models can sustain near-to-software accuracy even at high compute line-rates [9, 10]. 

2. Neuromorphic photonics state-of-the-art review 

To be able to challenge the electronic solutions in terms of computational power and area efficiency, neuromorphic 

photonic engines need to, simultaneously, sustain >10 Gb/sec line-rates [1-3] and offer up to 8-bit-resolution DL 

environment. Figure 1(a) shows compute rate performance in MAC/sec/axon of Wavelength Division Multiplexed 

(WDM) and coherent architectures experimentally demonstrated within the last five years [6, 7], [11-21]. Regardless 

of different architectural schemes and photonic technologies, a clear discrepancy in performance can be seen between 

WDM architectures [11-17], which consistently operate in GHz regime, and interferometric coherent layouts [6, 7], 

[18-21], typically clustered around sub-MHz operating regime. However, WDM technology typically necessitates a 

high amount of wavelength resources for increasing fan-in and computational power [17] unlike single-channel 

coherent layouts which allow for more resourceful scaling. Thus far, coherent linear optics has been almost exclusively 

relying on multiple cascaded stages of 2x2 Mach-Zehnder Interferometric (MZI) meshes [19], a design highly 

 
Fig. 1. (a) Compute rate per axon performance of WDM and coherent neuromorphic architectures demonstrated experimentally within the 
last 5 years; (b) power consumption vs. device length for the different optical weight enabling technologies, with red dots designating the 

potential for operating also in training applications. 
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sensitive to individual device loss uniformity and phase control, limiting its operational line-rates. A new paradigm, 

where bijective mapping between weights and photonic hardware is achieved via dual-IQ-modulator-based 

computational cells [5], closed the gap between the coherent and WDM solutions, elevating coherent neurons to  

10 GMAC/sec/axon compute rates [6]. Migrating to SiGe Electro-Absorption Modulators (EAMs) for both on-chip 

data generation and weighting purposes, we accomplish the extension of on-chip compute rates to 32 GMAC/sec/axon, 

leveraging its high-bandwidth capabilities [7]. The employment of the, still, unused wavelength domain in coherent 

solutions for parallelization of operation paves the way towards >100 GMAC/sec performance per synaptic element. 

Driving down the overall power consumption and footprint of the photonic NN brings the focus to weighting 

technology, since a typical N-input neuromorphic layout requires N2 weights to perform N2 MAC operations. 

Moreover, if in-situ training of the NN is required, the weights need to allow for sub-nsec reconfiguration times, 

appending an additional load on the already challenging task of simultaneously achieving low power consumption, 

small footprint, and low insertion losses (ILs) [1-3]. As Fig. 1(b) reveals, Phase-Change-Material (PCM) non-volatile 

memories are opted in inference engines [11], [22] due to their size and power efficiency; however, on-chip training 

can be sustained only through electro-optic (E/O) technologies, such as EAM [7] and Barium Titanate (BTO) [24] 

waveguides. 

3. PNN architectures, technologies, and training methods 

The utilization of E/O technologies to achieve high input and weight linerates inevitably induces IL penalty, which 

cannot be tolerated by conventional coherent neuromorphic processors that rely on 2x2 MZI meshes [18-21] employed 

in a Singular Value Decomposition (SVD) layout, due to the exponential scaling of their IL with the number of inputs. 

To tackle this challenge, we designed a novel coherent photonic crossbar architecture [4], shown in Fig. 2(a), that can 

support any linear transformation in the optical domain, while offering significant IL and fidelity benefits compared 

to SVD-based schemes. Figures 2(b) and (c) depict SiPho single column demonstrators of 4×M and 2×M M-column 

crossbar versions [6, 7]. More specifically, Fig. 2(b) illustrates a 4-input neuron that employs E/O MZM inputs and 

thermo-optic (T/O) weights [6], while Fig. 2(c) shows a 2-input neuron that exploits EAMs both for input data and 

weight imprinting [7].  

In both cases, and generally in any analog DL photonic engine, an undesired accumulated noise, that stems from 

the cascaded photonic elements limits their computational performance in terms of speed and accuracy. In order to 

implement high-accuracy neural networks through imperfect photonic components, a properly adapted DL training 

framework is deemed necessary [5-7],[9-10]. We have recently presented a method that allows the inclusion of the 

noise of photonic components in the training of NNs. This noise-aware training method was validated via the 4-input 

neuron shown in Fig. 2(b), operating at 10 GMAC/sec/axon, while its accuracy-performance boost is clearly 

highlighted in Fig. 3(a). The solid lines correspond to the results derived from the simulation model, for different 

white noise levels with the standard deviation σ ∈ [0, 0.6]. The scattered points represent the experimentally recorded 

data from the baseline and noise-aware training method, respectively, and closely follow the simulation models in 

both cases, with the noise-aware training apporach offering 2.54% best-case accuracy improvement compared to the 

baseline scenario. Finally, Fig. 3(b) shows MAC/sec/axon compute rate versus accuracy reported by coherent-based 

demonstrations so far (black dots), revealing that the achieved experimental accuracy was 72% [20], 76.7% [19] and 

90.5% [21], with the compute rate per axon not exceeding 10 kHz. With the employment of single columns of the 

crossbar (Fig. 2(b),(c)) for the hardware implementation of an NN, we achieved a record-high compute rates at 10 and 

32 GMAC/sec/axon with the 4- and 2-input neurons, respectively, while the corresponding experimental accuracy 

 
 

Fig. 2. (a) The photonic crossbar architecture, with the inset illustrating a weighting module that is composed of an optical phase shifter followed 

by a Variable Optical Attenuator (VOA). (b) 4:1 single column crossbar layout in SiPho chip with MZI-based T/O weighting modules, (c) 2:1 
single column crossbar layout in SiPho chip with EAM-based E/O weighting structures.   
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values remain as high as ~98% and ~96%, outperforming all state-of-the-art coherent layouts by ~6 orders of 

magnitude in terms of compute rate and 7% in terms of classification accuracy performance. 

4. Conclusion 

We reviewed the neuromorphic photonic architectures and technologies, highlighting the key challenges and 

limitations of the state-of-the-art demonstrators. Additionally, we present our recent work on photonic NNs, 

demonstrating a linear crossbar architecture, along with a noise-aware training method to improve NN accuracy. 
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Fig. 3. (a) Accuracy performance on MNIST classification task versus the standard deviation of the noise σ at 10 GMAC/sec/axon, when using 

the 4:1 SiPho single column crossbar layout. Solid lines illustrate the simulated results, while the scatter points represent the experimentally 

recorded data. (b) Linerate in MAC/sec/axon and classification accuracy of state-of-the-art coherent neuron demonstrators.  
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