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Abstract: Sample complexity, or equivalently the required number of photodetectors, of a carrier-
less phase-retrieving coherent receiver is investigated numerically based on the experimental data; 
it can achieve comparable complexity to conventional coherent receivers. © 2020 The Author(s) 

1.  Introduction 
As a low-complexity coherent receiver solution for optical short-reach 
applications, a carrier-less coherent receiver based on phase retrieval (PR) 
has been demonstrated recently [1,2]. In the PR receiver, an optical phase-
modulated signal is reconstructed from multiple magnitude-only 
measurements computationally based on PR, which has a rich history in 
many areas, including electron microscopy and crystallography [3]. No 
local light sources or optical hybrids are needed. As far as the authors 
know, two PR receiver architectures have been demonstrated 
experimentally so far. One is based on random sampling through diffraction [1] (Fig. 1). Another exploits a 
complementary measurement through a dispersive medium [2]. The latter approach allows to reconstruct an unknown 
from two intensity measurements. Meanwhile, as it relies on the random sampling, the farmer approach is spatially 
flexible and has potential to be a universal receiver solution for optical space division multiplexing (SDM) systems. 
However, the random approach requires more samples. For instance, 6 photodetectors (PDs) were needed per SDM 
channel in the demonstration in [1,4]. A question is, how many PDs are needed/enough for the PR receiver based on 
random sampling in practice? Theoretically, with generic random sampling, the answer is around 4, namely the 4ℳ −
4 conjecture [5,6]. However, in practice, the sampling through a diffraction medium, namely scrambler, cannot be 
purely random and structured. The actual sample complexity of the PR receiver jointly depends on the structure, the 
type of the PR algorithm employed, and the transmitted signal format.  
  In this work, we numerically investigate the sample complexity of the PR receiver by using a two-dimensional PD 
array (2-D PDA) proposed in [1,4]. Different PR algorithms are compared under practical assumptions. The results 
are further confirmed by numerical simulations based on the scrambler responses obtained experimentally.  

2.  Numerical Analysis 
Suppose 𝑁𝑁𝑡𝑡-channel SDM signals are scrambled and detected by 𝑁𝑁𝑟𝑟 arrayed PDs. We have the PR problem [4]: 
 find  𝒙𝒙    s. t.   𝒚𝒚 = |𝑯𝑯𝒙𝒙|, (1) 
where 𝒙𝒙 ∈ ℂ𝑁𝑁𝑡𝑡𝑀𝑀×1 is a vector of the SDM signals, 𝒚𝒚 ∈ ℝ+

𝑁𝑁𝑟𝑟𝑀𝑀×1 is a vector of magnitude-only measurements, 𝑯𝑯 ∈
ℂ𝑁𝑁𝑟𝑟𝑀𝑀×𝑁𝑁𝑡𝑡𝑀𝑀 represents the response of a scrambler, and 𝑀𝑀 is a signal block size. Note that, |⋅| is defined as an element-
wise operator here. One may solve (1) by minimizing the following amplitude-based loss function:  

min
𝒙𝒙
𝑙𝑙(𝒙𝒙) ≔ ‖𝒚𝒚 − |𝑯𝑯𝒙𝒙|‖22 /(2𝑁𝑁𝑟𝑟𝑀𝑀). (2) 

where ‖⋅‖2  is the ℓ2 -norm. In Table. 1, we summarize some low-complexity algorithms for the non-convex 
optimization in (2) suitable for high-speed communication applications. Due to the page limitation, we leave the 
technical detail of each algorithm to the literature. These algorithms guarantee the optimal sample and computational 
complexity orders in generic random sampling models [7-10]. From the practical point of view, their major 
differences are the computational burden for initialization and the sensitivity to the parameters. RAF and DRAF 
require a careful initialization and parameter tuning. The algorithms have comparable computational complexity per 
iteration, while PhareADMM needs a matrix inversion (𝑯𝑯H𝑯𝑯)−1 in its initial step. In the simulation, we evaluated 
the algorithms in two different sampling models. The first model was a Gaussian random sampling model, i.e., 
[𝑯𝑯]𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩𝑐𝑐(0,1), as an ideal case. The second is a random convolutional sampling model for practical scramblers. 
In the second case, 𝑯𝑯 was given by a (block) Toeplitz matrix comprising of i.i.d. Rayleigh-fading channel response 
vector 𝒉𝒉𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩𝑐𝑐(𝟎𝟎𝐷𝐷×1, 𝑰𝑰𝐷𝐷×𝐷𝐷) (𝑖𝑖 = 1, … ,𝑁𝑁𝑟𝑟 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑡𝑡) where D denotes the channel memory length. 

 
Fig. 1 PR-based coherent receiver [1]. 
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Fig. 2 represents the bit-error rate (BER) performance versus the sample complexity 𝛺𝛺: = 𝑁𝑁𝑟𝑟/𝑁𝑁𝑡𝑡. The BER is the 
averaged over 1000 realizations of 𝑯𝑯 in the absence of noise. 𝑯𝑯 is assumed to be known to the receiver. For fairness, 
each algorithm employed the weighted maximal correlation method [7] for initialization. The number of iterations 
was 600 for each case. We fixed 𝑁𝑁𝑟𝑟 = 16 and 𝑀𝑀 = 64, while 𝑁𝑁𝑡𝑡 was adjusted depending on 𝛺𝛺. The QPSK format 
was employed. The parameters for RAF and DRAF were the same as in [4]. In the Gaussian sampling model in Fig. 
2a), all the algorithms converged to the exact solution with high probability; the BERs were well below the 20%-
FEC (forward error correction) threshold, i.e., BER =2.0 × 10−2, for 𝛺𝛺 > 4. The conventional coherent receivers 
utilize 4 PDs (2 balanced-PDs) per channel. Therefore, the sample complexity of 𝛺𝛺 = 4 is comparable to that of the 
conventional receivers. However, the performance of the PR receiver was degraded in the practical convolutional 
model as in Fig. 2b). The structured PR problems are often ill-posed [10,11]. Especially, AMP.P did not converge in 
the model; RAF suffered from the error floor even without the noise. As in Fig. 2c) and d), the performance further 
deteriorated as the memory length D become shorter. In other words, the PR receiver requires a certain memory 
length for the scrambler. Even so, it was possible for DRAF and PhareADMM to achieve the FEC limit for D=5. 
Especially, PhareADMM achieved 𝛺𝛺 = 3.2 (= 16/5) even with such ‘poor’ scrambler (D=5) at the expense of the 
computational cost in its initial step. Next, we investigate the noise tolerance of DRAF and PhareADMM. Fig. 2e) 
and f) show BER versus the number of iterations for different received SNR in the convolutional model with 𝐷𝐷 =
15. Fig. 2e) and f) are for 𝛺𝛺 = 4 and 8, respectively. The SNR is defined in the optical domain, i.e., SNR =
E[‖𝑯𝑯𝒙𝒙‖22]/E[‖𝒏𝒏‖22] where 𝒏𝒏 ∈ ℂ𝑁𝑁𝑟𝑟𝑀𝑀×1 denotes a noise vector. As shown in Fig. 2e), PhareADMM could achieve 
the comparable sample complexity to the conventional receivers for QPSK transmission if SNR ≥ 16 dB. Meanwhile, 
the noise tolerance could be further improved by exploiting more samples as shown in Fig. 2f) (𝛺𝛺 = 8). Particularly, 
the improvement, namely diversity gain, was significant in DRAF. In fact, the feature was a key to overcome the 
limited sensitivity of the prototype 2-D PDA in the proof-of-concept demonstration in [1,4] where 𝛺𝛺 = 12. 

Table. 1 Low-complexity PR algorithms for amplitude-based loss function in (2). (𝑚𝑚 ≔ 𝑁𝑁𝑟𝑟𝑀𝑀 and 𝑛𝑛 ≔ 𝑁𝑁𝑡𝑡𝑀𝑀) 

Ref. Computational complexity Parameter 
sensitivity Description per iteration initialization 

RAF [7] 𝛰𝛰(𝑚𝑚𝑛𝑛) Spectral method (𝛰𝛰(𝑚𝑚𝑛𝑛)) High A gradient descent-like approach based on the generalized 
gradient. 

DRAF [4] 𝛰𝛰(𝑚𝑚𝑛𝑛) Spectral method High A robust RAF for discrete-valued signal reconstruction. 
PhareADMM 

[8] 𝛰𝛰(𝑚𝑚𝑛𝑛) A matrix inversion is 
needed (𝛰𝛰(𝑚𝑚𝑛𝑛2)) Low Phases and amplitudes are separately updated based on the 

alternating direction method of multipliers (ADMM). 

AMP.A [9] 𝛰𝛰(𝑚𝑚𝑛𝑛) Random initialization Moderate An approximate message passing (AMP) approach with ℓ2 
regularization. 

Fig. 2 Sample efficiency 𝛺𝛺 versus BER for different measurement models: a) Gaussian random model, and random convolutional models 
with b) D=20, c) D=10, and d) D=5. Number of iterations T versus BER for e) 𝛺𝛺=4 and f) 𝛺𝛺=8 in the presence of noise. 
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 3.  Numerical Simulation based on Experimental Data 
We further investigate the achievable sample complexity of the PR receiver with PhareADMM numerically based on 
the response of the optical scramblers obtained experimentally. Fig. 3 a) is the experimental setup. At the transmitter, 
a < 0.1-kHz-linewidth fiber laser output at 1550.72 nm was modulated by a dual-polarization (DP) optical IQ 
modulator driven by a 10-GSa/s pulse pattern generator (PPG) to generate a 10-Gbaud DP-QPSK signal, i.e., 𝑁𝑁𝑡𝑡 = 2. 
The DP-QPSK signal was amplified to 17.5 dBm by an Erbium doped fiber amplifier (EDFA) and launched into an 
optical scrambler based on modal coupling and dispersion in a multimode fiber (MMF). We tested 1 and 1.7-km 
standard GI50 OM3 MMF with 0 and 20-µm radial offset launching. The scrambler output was detected through 
collimate lens by a 4-pixel 2-D PDA (the central 4 PDs of the 32-pixel 2-D PDA [12]). The pixel size was 30 µm × 
30 µm with a 44-µm pitch, and each pixel had 11-GHz bandwidth. The PD output was sampled by a 4-channel digital 
storage oscilloscope (DSO) at 20 GSa/s. The fractionally-spaced samples resulting from the 2-fold oversampling was 
exploited to increase the number of samples to 8 (= 4 × 2) as in [1,4]. The resulting sample complexity was 𝛺𝛺 =
8/2 = 4. More specifically, the complexity was a half of the conventional receiver in sense of PD count and was the 
same with respect to ADC count. Based on 61,440 DP-QPSK symbols, the scrambler response 𝑯𝑯 including its phase 
was estimated via RAF in an offline manner (See [4] for the detail). For fairness, it should be mentioned that the SNR 
of the setup was not enough to reconstruct a DP-QPSK signal for 𝛺𝛺 = 4 due to the lack of the PD amplifiers. In fact, 
12 PDs with 2-fold oversampling (i.e., 𝛺𝛺 = 12) were needed for DP-QPSK detection in [1,4]. However, it was 
possible to estimate the scrambler response with the aid of a long pilot sequence. The response 𝑯𝑯 was observed 100 
times with slightly different fiber conditions to assess the statistical performance. of the PR receiver.  

  Fig. 3b) represents the averaged power delay profile of the estimated scrambler responses, i.e., ∑ �𝒉𝒉𝑖𝑖𝑖𝑖�
2

𝑖𝑖,𝑖𝑖 . Fig. 3c) 
shows the averaged BER performance evaluated numerically based on the scrambler responses in the presence of 
(simulated) noise. Although the 8 space-time channels were correlated each other unlike in the previous numerical 
simulations, it was possible to achieve the 20%-FEC limit via PhareADMM. With a 1-km MMF with and without 20-
µm offset launching, BER below the FEC limit was achieved for SNR > 18 dB and 20 dB, respectively. With a longer 
fiber of 1.7 km, the effective channel memory length 𝐷𝐷 ≅ 10 at 10 GSa/s, and DP-QPSK signals could be retrieved 
for SNR ≥ 16 dB with the sample complexity comparable to the conventional coherent receivers.  

4.  Conclusions 
We investigated the sample complexity of a diffraction-based PR receiver by using a 2-D PDA. Numerical results 
based on the scrambler response obtained experimentally indicate that, for QPSK transmissions, the PR receiver with 
some practical scramblers has potential to achieve the comparable sample complexity to the conventional coherent 
receivers, i.e., 4 PDs (2 balanced-PDs) per channel and/or 2 ADCs per channel.  
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Fig. 3 a) Experimental setup, b) power delay profile of MMF-based scramblers, and c) BER versus number of iterations. 
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