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Abstract: GMI-based end-to-end learning is shown to be highly nonconvex. We apply
gradient descent initialized with Gray-labeled APSK constellations directly to the constel-
lation coordinates. State-of-the-art constellations in 2D and 4D are found providing reach
increases up to 26% w.r.t. to QAM.
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1. Introduction

Signal shaping has recently received considerable attention in the literature and is now regarded as a key tech-
nique to improve throughput in high-speed fiber-optic systems. Shaping methods can be broadly categorized into
probabilistic shaping (PS) and geometric shaping (GS), both having distinct advantages and disadvantages [1–3].
This paper focuses on GS, i.e., using nonrectangular constellations, due to its relative simplicity compared to PS.

Traditional methods for GS include, e.g., genetic algorithms [2] and pair-wise optimizations [4, 5]. A different
approach is to regard the entire communication system design as an end-to-end reconstruction task, similar to
autoencoders (AEs) in machine learning (ML) [6]. This approach jointly optimizes transmitter and receiver neural
networks (NNs), where the transmitter NN performs GS. A key advantage of this method is that it can be applied
to arbitrary channels, including nonlinear optical ones. This was done for example in [7–9], where the objective
function was a lower bound on the mutual information (MI). In practice, binary forward-error correction (FEC)
is typically employed, in which case the generalized mutual information (GMI) is a more suitable performance
metric. GMI-based end-to-end learning was studied in [10], where it is shown that the AE approach can jointly op-
timize the constellation and its corresponding binary labeling. While the optimization arrived at a well-performing
solution, the irregular constellation shape in [10, Fig. 2] suggests that only a local optimum was found.

In this paper we investigate GMI-based end-to-end AE learning systematically extending the results of [10].
Our contributions are threefold. First, we demonstrate that the use of GMI as a cost function results in a highly
nonconvex optimization landscape. Since AE learning relies on local search methods (i.e., gradient descent), the
optimization is thus prone to only find local optima when randomly initialized. Second, we compare a variety of
methods to deal with nonconvex functions. Generic ML methods (e.g., cyclical learning rates [11]) are shown to
be relatively ineffective for our problem, whereas domain-specific methods (e.g., initialization with Gray-labeled
constellations) are more promising. Lastly, we propose a simple, yet effective, approach to GMI-based GS which
applies gradient descent directly to constellation coordinates. This is similar to the approach for symbol-error
minimization proposed in 1973 in [12]. Our method can be seen as a special case of AE learning where the
transmitter NN has no hidden layers. While this method is not guaranteed to converge to a global optimum, state-
of-the-art constellations with up to 1024 points in 2D and up to 64 points in 4D are obtained and reported here.

2. End-to-End Autoencoder Learning Based on GMI

We start by reviewing the AE approach in [10]. Let M be the constellation size and m = log2 M. At the transmitter,
binary vectors b = (b1, . . . ,bm) ∈ {0,1}m are mapped to constellation points x ∈ RN via an NN according to
x = fθ (b), where θ are the NN parameters (i.e., weights and biases). The received channel observation y ∈ RN is
passed through a receiver NN which tries to learn the bit-wise posterior distributions fBi|Y(bi|y), i = 1, . . . ,m. The
learned posteriors are denoted by qφ (bi|y), i = 1, . . . ,m, where φ are the parameters of the receiver NN. Training
of (θ ,φ) is based on the per-sample loss `(b,y) = −m−∑m

i=1 log2 qφ (bi|y), where the negative expected loss
−E[`(B,Y)] can be shown to be a lower bound on the GMI = m+E[∑m

i=1 log2 fBi|Y(Bi|Y)] [10]. In practice, the
expectation E[`(B,Y)] is replaced by using empirical averages 1

K ∑K
i=1 `(b(i),y(i)), where K is the batch size.
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transmitter neural network: x = fθ (b) ∈ RN
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Fig. 1: Left: Block diagram of the transmitter NN for GMI-based end-to-end learning; red arrows illustrate three ways to compute the loss
function for optimizing the NN parameters. Right: Empirical CDF of the AE results assuming 200 random starting points, where M = 16,
N = 2, SNR = 9dB (Cyclical: cyclical learning rate, BSA: binary switching algorithm, QAM init.: initialization with Gray-labeled 16-QAM).

Throughout this paper, we assume transmission over the N-dimensional additive white Gaussian noise (AWGN)
channel. This channel models well uncompensated multi-span optical links with standard single-mode fiber
(SSMF). In Sec. 3, reach results will be presented by assuming the Gaussian noise (GN) model [19]. The AWGN
channel assumption also allows us to focus exclusively on the transmitter optimization (i.e., GS) without having
to consider the receiver optimization of φ and the associated hyperparameter tuning. In particular, in this paper we
use the per-sample loss `(b,y) =−m−∑m

i=1 log2 fBi|Y(bi|y) based on exact posteriors, which can be evaluated in
closed form without the need for a receiver NN since the channel law is known.

We implemented an AE as shown in Fig. 1 (left), where the transmitter NN has 2 hidden layers, each with 200
ReLU-activated neurons.1 Compared to [10], we first map b to one-hot encoded vectors, rather than directly using
b as the NN input (i.e., our input layer has M neurons and not m as in [10]). The NN parameters θ are randomly
initialized using the approach in [15] and optimized using the Adam optimizer [16] with learning rate (LR) 0.001
and batch size K = 480. After 2000 gradient steps, the GMI of the resulting constellation is approximated with
Gauss-Hermite quadratures. This procedure is repeated 200 times. Fig. 1 (right) shows the empirical cumulative
distribution function (CDF) of the obtained GMIs (circles), where M = 16, N = 2, SNR = 9 dB. The best con-
stellation achieved a GMI of 2.957 bits/2D, which is comparable to the GMI of 2.958 bits/2D reported in [5].
However, with over 93% probability, the AE returned a constellation whose GMI is worse than Gray-labeled 16-
QAM. These results indicate that the optimization landscape for GMI-based learning is highly nonconvex, which
makes it very challenging to find a global optimum for this problem. These results also show that the initialization
is an important design parameter.

A straightforward way to deal with nonconvex functions is to repeat the optimization with more starting points.
On the other hand, it would be desirable to modify the optimization in order to guarantee a better outcome. One
option is to use cyclical LRs [11, 13], where the LR is varied between some predefined boundary values, thereby
simulating multiple restarts in a single optimization run. While this indeed made the AE results more reliable
(squares in Fig. 1 (right)), the chance of obtaining a constellation worse than 16-QAM remains high. We also
experimented with various NN architectures but did not notice any significant differences in terms of the opti-
mization behavior. Besides generic ML methods, domain-specific approaches may also improve the optimization
behavior. For example, the binary switching algorithm (BSA) finds the best “swap” of two binary labels and can
overcome barriers in the optimization landscape [14]. The BSA can be integrated into the AE learning by mod-
ifying the mapping function to the one-hot vectors. We repeated the simulations executing the BSA every 200
gradient steps, which gave slightly more improvements compared to cyclical LRs (triangles in Fig. 1 (right)).
Finally, we initialized the optimization with Gray-labeled constellations. This requires a pre-optimization step,
where the NN parameters are first fitted to produce a desired constellation. Using Gray-labeled 16-QAM as the
initialization for the simulations gave the most reliable optimization outcome among all methods (diamonds in
Fig. 1 (right)). Note that the optimization outcome is still random due to the nature of stochastic gradient descent
and the finite batch size.

3. Proposed Approach to GMI-Based Geometric Shaping

As noted in the previous section, the particular architecture of the transmitter NN (e.g., the number of layers)
appears to have little influence on the optimization behavior. On the other hand, it is always desirable to minimize
the NN size and reduce the number of free parameters in order to keep the optimization time to a minimum. One
extreme case is when all hidden layers are removed and the input layer is directly connected to the output layer.
Assuming that all biases are 0, the network weights then directly correspond to the coordinates of the constellation
points (before the normalization). We show here that this approach is indeed sufficient to obtain state-of-the-art
GMI-optimized constellations. This also connects the end-to-end AE learning approach in [6] to early works on

1Source code and the obtained constellations can be found online at https://github.com/kadirgumus/Geometric-Constellation-Shaping
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Fig. 2: Results for N = 2, M = 1024 (left), N = 2, M = 256 (center), and N = 4, M = 64 (right), where the optimization is done separately
for each SNR. SNR gains are with respect to QAM and measured assuming a binary FEC with rate 0.8 (dotted lines). The amount of rings for
the initial APSK constellations are 16, 8 and 1, respectively (left to right). Gains with respect to prior works are 0.14 dB, 0.12 dB, and 0.13
dB, respectively. The reach increases are calculated according to the GN model [19] based on a multi-span optical link with SSMF, 45 GBaud
symbol rate, and 11 WDM channels. The length of a span is 80 km and EDFA noise figure is 4.5 dB.

GS for symbol-error minimization, where gradient descent is directly applied to the constellation coordinates [12].
We use the simplified NN with no hidden layers, initialized with Gray-labeled APSK constellations as defined

in [17]. APSK initialization gave good results for medium to high SNRs. QAM initialization gave better results
only at very high SNRs. In order to remove stochastic effects from the optimization, we use Gauss–Hermite
quadratures to compute the GMI. Optimization results for 2D formats with M = 1024 and M = 256, as well as
4D formats with M = 64 are shown in Fig. 2, where a separate optimization is performed for each SNR. The
number of iterations was set to 1000, 800, and 3000, respectively. As a comparison for M = 256, we use the GMIs
reported in [5]. We also note that the optimization procedure in [5] is much more computationally involved and
requires hours to converge, whereas the proposed gradient-based approach converges within around 15 minutes.
Our proposed approach is therefore scalable also to larger constellation sizes. Indeed, for M = 1024, no results
were reported in [5]. We were unable to find GMI-optimized constellations with M = 1024 in the literature. Instead,
we implemented the approach in [3] as a comparison, which also uses APSK as a starting point but only optimizes
the radii distribution. For the 4D case, we compare to a recently proposed format based on polarization-ring-
switching [18]. In all three cases, our approach gives state-of-the-art results, outperforming prior work by 0.14
dB, 0.12 dB, and 0.13 dB, respectively, measured assuming a binary FEC with rate 0.8 (dotted lines). Compared
to conventional QAM formats, SNR gains of up to 1 dB are obtained, translating into up to 26% reach increases.

4. Conclusions
We proposed a fast end-to-end learning algorithm to solve the problem of optimizing labeled constellations. It was
shown that the problem in question is nonconvex and that off-the-shelf algorithms are prone to converge to local
optima. The crucial role of a good starting point for the optimization was also highlighted.
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