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Abstract: A demodulation scheme for an eigenvalue modulated signal based on an

eigenvalue-domain neural network is demonstrated experimentally. Successful demod-

ulation is demonstrated at 2.5 Gb/s over a transmission distance of up to 3,000 km.
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1. Introduction

Optical eigenvalue communication [1] based on the inverse scattering transform (IST) [2] has been studied as a

means of overcoming the nonlinear Shannon limit [3–10]. The IST is recently well-known as nonlinear Fourier

Transform (NFT). Although optical waveforms and frequency spectra change during propagation in a nonlinear

dispersive fiber, the eigenvalues of the eigenvalue equation associated with the nonlinear Schrödinger equation are

invariant. To increase the spectral efficiency, various eigenvalue modulation schemes have been proposed, such

as on-off encoding of multi-eigenvalues [4, 5] and phase shift keying modulation of the spectral amplitude for

multi-soliton pulses [6].

For eigenvalue demodulation, the received time-domain signal is converted to an eigenvalue pattern using the

IST. After that, a hard decision (HD) with a linear threshold on the eigenvalue plane is performed in the conven-

tional method. However, upon optimizing the decision threshold, the problem is that eigenvalue deviation due to

noise and fiber loss is not i.i.d. with the circular Gaussian process, particularly in the case of a multi-eigenvalue

system [7, 8]. To improve the received power margin, demodulation methods using a time-domain artificial neural

network (ANN) have been demonstrated recently [9, 10]. However, although using a time-domain ANN results

in a large power margin of 11 dB compared with the conventional IST+HD method [10], the former approach

requires training for each transmission distance because the time-domain pulses change during transmission.

In this paper, we propose and experimentally demonstrate a demodulation scheme for an eigenvalue modulated

signal based on an eigenvalue-domain ANN. The proposed scheme is a combination of the IST and an ANN to

retain the benefits of invariant eigenvalues during transmission without requiring training for each transmission

distance. The proposed demodulation outperforms the conventional IST+HD method by a power margin of 3.8

dB at a bit error rate (BER) of 3.8× 10−3. For a transmission distance of 3,000 km, we demonstrate successful

demodulation of the eigenvalue modulated signal at a bit rate of 2.5 Gb/s with a BER < 3.8×10−3, and the trained

ANN demodulator is valid for transmission distances from zero to 3,000 km.

2. Eigenvalue Modulation and Neural Network Based Demodulation

In this work, we used eigenvalue modulation with on-off encoding. Figure 1 shows modulation and three different

demodulation schemes. This modulation begins with a sequence of N bits being encoded into an eigenvalue pat-

tern, which is the on-off state of the complex eigenvalue ζn on the complex eigenvalue plane. Next, the encoded

eigenvalue pattern is converted into an input pulse by using IST [5]. The converted pulse corresponds to a symbol

carrying N information bits. The optical eigenvalue modulated signal is transmitted over optical fiber transmission

line.

At the receiver, the eigenvalue modulated signal is demodulated after coherent detection. In the conventional

IST+HD scheme shown in Fig. 1(a), the received pulse is converted into an eigenvalue pattern by using IST. The

detected eigenvalue pattern is decoded into an information bit sequence by setting the linear thresholds appropri-

ately on the complex eigenvalue plane. In previous work [10], a time-domain pulse was input to an ANN, and

a decoded information bit sequence was output directly as shown in Fig. 1(b). Figure 1(c) shows the proposed

demodulation method based on an eigenvalue-domain ANN. In this method, the ANN inputs are the eigenvalue

data that are converted from the time-domain pulse using the IST. The real and imaginary parts of each eigenvalue
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Fig. 1: Modulation and three different demodulation schemes: (a) inverse scattering transform (IST) + hard decision (HD) (conventional

method); (b) time-domain artificial neural network (ANN) (previous method), and (c) eigenvalue-domain ANN (proposed method).

are input to the ANN, which outputs the probability parameter of the bit sequence corresponding to the detected

eigenvalue pattern. The configuration of the eigenvalue-domain ANN demodulator for four eigenvalues (N = 4)

is shown in Fig. 1(c). For a sampling rate of 32 samples per pulse, the number of converted eigenvalues including

continuous spectrum is also 32, and there are 64 input elements comprising the 32 real and 32 imaginary parts of

those eigenvalues. The number of output elements is 16, corresponding to the number of eigenvalue patterns (i.e.,

24 = 16).

3. Experimental Setup and Results

Figure 2 shows the experimental setup with an off-line ANN-based receiver. For eigenvalue modulation, we used

four eigenvalues of ζ = {(−0.5+ 0.5i)/2,(0.5+ 0.5i)/2,(−0.5+ 1.0i)/2,(0.5+ 1.0i)/2} ∈ C as shown in the

inset of Fig. 2. For the eigenvalue modulated signal, the random 62,250 pulses were generated off-line. The

optical signal was generated using an arbitrary waveform generator (AWG) operated at 10 Gsample/s and an IQ

modulator. The pulse duration was 1.6 ns, each pulse contained up-to four discrete eigenvalues, and the effective

bit rate was 2.5 Gb/s. The optical signal was launched into a transmission loop that included a 50-km non-zero

dispersion shifted fiber (NZ-DSF) and an erbium-doped fiber amplifier (EDFA). The NZ-DSF parameters were

a dispersion parameter of D=4.4 ps/nm/km, a dispersion slope of S=0.046 ps/nm2/km, a nonlinear coefficient of

γ=2.1 W−1/km, and a fiber loss of 0.2 dB/km. The input power was set to –3.0 dBm, which was the calculated ideal

average power for the eigenvalue modulation. At the receiver, the received signals were analog-digital converted by

a digital storage oscilloscope operated at 40 Gsample/s, and the digital signal was downsampled to 20 Gsample/s.

The digital signal processing (DSP) for the demodulation was performed in an off-line manner.

The ANN configuration and parameters for the demodulation were described in Section 2. We used a three-layer

perceptron configuration and the rectified linear unit (ReLU) activation function . The number of hidden units was

set to 128. We used the soft max function as the output function and the cross-entropy error function as the loss

function. The 62,250 received pulses were divided into one sequence of 10,000 pulses for the training and another

of 52,250 pulses for BER testing. The ANN was trained using an Adam optimizer [11] from the TensorFlow

open-source library. The training data were extracted uniformly from the data sets at an optical signal-to-noise

ratio (OSNR) between −2 and 17 dB.

Figure 3 shows the BER curves obtained in the loop-transmission experiments with different demodulation

methods and training conditions. Figure 3(a) shows the BER curves for back-to-back (B-to-B). The eigenvalue-

domain ANN demodulator outperforms the conventional IST+HD method by a power margin of 3.8 dB at a

BER of 3.8× 10−3 assuming the HD forward error correction (FEC). This is better than with the conventional
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Fig. 2: Experimental setup.
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Fig. 3: BER curves in loop-transmission experiments.

1.6 ns

0101 1101 1111

B-to-B

2,000km

3,000km

4,000km

(a)

(b)

0101 1101 1111

B-to-B

2,000km

3,000km

4,000km

Fig. 4: (a) Waveforms and

(b) eigenvalue patterns.

IST+HD method because the Euclidean distance in the 64-dimensional space of the 64-input ANN is larger than

that in the two-dimensional space of the complex eigenvalue plane in the IST+HD method. The time-domain ANN

demodulator achieves a much better BER in B-to-B because the effect of noise in the discrete eigenvalue-domain

is greater than that in the time-domain. Figure 3(b) and (c) show the BER curves before and after transmission

when using the time- and eigenvalue-domain ANN demodulators trained for each different transmission distance.

Figure 4 shows the received waveforms and detected eigenvalue patterns for representative patterns. After the

4,000-km transmission, there was a large power penalty due to inter symbol interference [10]. The eigenvalue

patterns were conserved at 3,000 km, however, the variations in eigenvalue position were greater than those in

the B-to B and 2,000-km transmission because of the transmission distortion including fiber loss and amplified

spontaneous emission (ASE) noise. This is why the BER curve indicates the error floor under high OSNR at 3,000

km.

Figure 3(d) and (e) show the BER curves when using the time- and eigenvalue-domain ANN demodulators

trained for the fixed distance of 3,000 km. In the case of the time-domain ANN, as shown in Fig. 3(d), it is

difficult to demodulate the received signal for the different transmission distances because the time-domain pulse

shape changes during the fiber transmission. By contrast, as shown in Figure 3(e), the eigenvalue-domain ANN

can deal with the received signal for both the 2,000-km and 3,000-km transmissions. These results indicate that

the eigenvalue-domain ANN demodulator is superior to the time-domain ANN demodulator in generalization

performance of transmission distance owing to the invariance of the eigenvalues. Figure 3(f) shows the BER

curves obtained using the eigenvalue-domain ANN trained with 10,000 data for each of three distances, namely

zero (i.e., B-to-B), 2,000 km, and 3,000 km. A BER under the FEC limit was achieved for each distance from zero

to 3,000 km, thereby showing that the eigenvalue-domain ANN demodulator has the potential to cover a large

distance range in the point of generalization performance.

4. Conclusion

We proposed the demodulation of an eigenvalue modulated signal using an eigenvalue-domain ANN and demon-

strated it experimentally. The eigenvalue-domain ANN demodulator outperformed the conventional IST+HD de-

modulator by a power margin of 3.8 dB. Furthermore, we confirmed successful demodulation over distances from

zero to 3,000 km without training for each distance.
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