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Abstract: We demonstrate experimentally, the first all-optical recurrent-neuron with a sigmoid 

activation function and four WDM-inputs with 100psec pulses. The proposed neuron geared up a 

neural-network for financial prediction-tasks exhibiting an accuracy of 42.57% on FI-2010. 

 

1. Introduction 

Neuromorphic photonics are highly anticipated to revolutionize future computational systems by transferring their 

low-power consumption, time-of-flight latency and THz bandwidth credentials into neuromorphic hardware 

implementations [1]. In this context, research efforts have mainly focused on the deployment and demonstration of 

weighting banks [2], activation functions [3] linear neuron layouts [4] and novel training frameworks tailored to 

neuromorphic photonic configurations [5], with the main emphasis lying, however, on feed-forward neuron 

architectures [4], [6]. Although feed-forward architectures can indeed yield powerful configurations for a large set of 

applications, time-series analysis, classification and prediction tasks are well-known to comprise the stronghold of 

Recurrent-Neural-Networks (RNNs), which form also the backbone of more sophisticated Long-Short-Term-

Memory and Gated-Recurrent-Unit (GRU) architectures with unmatched processing capabilities. The 

implementation of RNNs directly in the optical domain would probably allow for performing time-series analysis at 

much higher line-rates compared to respective electronic RNNs, allowing for significant latency advantages in 

processing time sequences. However, only a small number of deployments towards all-optical RNNs have been 

reported so far, with the main demonstrations comprising simpler autaptic circuits either for spiking [7] or non-

spiking neural networks [8]. Turning autaptic circuitry into a full-scale Recurrent Neuron (RN) requires, however, 

the extra complexity of a multi-input linear neuron stage, which has not been reported so far. At the same time, 

migrating to all-optical RNs would benefit from the use of a sigmoid activation function that is much more 

commonly encountered in conventional AI training models for RNNs, offering significant benefits in terms of 

compatibility with the rich available Deep Learning training framework for time series processing tasks [9]. 

In this paper, we experimentally demonstrate for the first time, to the best of our knowledge, an all-optical RN 

with a sigmoid activation function using a WDM-based four-input linear neuron followed by a SOA-based all-

optical sigmoid activation module [10] incorporated in a recurrent layout. The performance of the photonic RN has 

been experimentally evaluated with 100psec optical pulses with the experimental results validating the recurrent 

behavior of the proposed RN for different levels of the recurrent weight values and with effective thresholding for 

timely de-synchronized input signals with a power level contrast of up to 8dB. The potential of the photonic sigmoid 

RN module to penetrate time series processing functionalities is then outlined by successfully training an RNN 

architecture that employs the proposed all-optical RN for prediction tasks with the FI-2010 financial data set.    

2.  All-optical Sigmoid Recurrent Module: Experimental Setup and Results  

Figure 1(a) illustrates the proposed RN that employs a recently demonstrated SOA-based optical sigmoid activation 

unit [10] being nested into a feedback delay loop. The principle of operation of the proposed RN is governed by the 

equation:  yt = f(∑(wi xt
i)+ wry(t-1))  for i=0…M, where M is the number of inputs, f(x) is the transfer function of the 

sigmoid activation unit (with Fig.1(b) depicting the experimentally obtained response together with the theoretical 

sigmoid fitting [10]), xt
i denotes the i-th input signal at time instant t, wi is the weight enforced to each xt

i, y(t-1) is the 

1-bit delayed version of the RN output y(t) at time instant t and wr the weight enforced within the recurrency loop at 

yt.  The experimental setup shown in Fig.1(a) uses only a single xt input signal for i=1 for validating initially the 

successful recurrent operation prior scaling this into a full-scale RN with multiple input signals. An input periodic 

electrical signal xt
1 with a period of K=4 symbols, a symbol-period of T=400psec and a pulse duration of 100psec 

was generated by an Arbitrary Waveform Generator (AWG) and was converted into a respective optical xt
1 via a 

LiNbO3 optical modulator that was powered by a CW optical beam at λ0. This signal was then weighted by a factor 

of w1 using a Variable-Optical-Attenuator (VOA) before entering the activation unit as the SOA-MZI control signal. 

More details about the detailed layout and the principle of operation of the SOA-based sigmoid activation module 
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can be found in [10]. The activation module output signal carried by λ6 enters then a 61m-long fiber loop that 

weights the output signal by a wr factor implemented by a VOA and enforces a time delay equal to T×(N×K-1), with 

N being an integer. In this way, the recirculating signal that gets combined and added with the next input symbol 

w1xt
1 via a fiber coupler prior entering again the activation stage carries the wry(t-1) information. An Erbium-Doped 

Fiber Amplifier (EDFA) and Optical Bandpass Filters (OF) were used to amplify and filter the recurrent signal. To 

validate the recurrent operation of the proposed neuron, several different weighting settings (wr) were investigated 

while keeping the input weight w1 constantly set to 1 (zero attenuation) for an input periodic sequence of “1000”. 

The time trace of the input signal is illustrated in Fig. 1(d). Figure 1(e), illustrates the neuron output for the highest 

possible attenuation within the fiber loop, so that wr=0. Decreasing the attenuation level by 4dB that yields a 

wr=0.7, three pulses with gradually decaying peak powers are formed within every signal period and every 400psec, 

as shown in Fig. 1(f), confirming the successful operation of the recurrency module. Finally, when no attenuation is 

applied to the recirculating signal and wr=1, these three pulses get almost power equalized with the initial input 

pulse, as can be clearly seen in Fig. 1(f). The operational conditions of the experiment are summarized in the panel 

shown in Fig. 1(h). 

3.  All-optical WDM Sigmoid Recurrent Neuron  

The all-optical sigmoid recurrent module of Fig. 1(a) was transformed into a 4-input WDM RN by connecting the 3-

input signal generation setup, shown in Fig. 1(c), to the respective 3 free ports of the 4:1 multiplexer unit (MUX). 

These three additional input signals carried at λ1, λ2 and λ3 were individually modulated with the same periodic 

electrical signal xt
i, that was used for modulating the first input signal employed also in the single-λ setup for the 

experimental validation of the recurrent module. ODLs were used prior the multiplexing operation in order to realize 

the timely-synchronized and de-synchronized addition of the four input signals. Figure 2(a) illustrates the spectrum 

of the resulting WDM sum obtained at the MUX output. In the case of timely-synchronized operation, the input 

signal is depicted in Fig. 2(b), while the RN output is shown in Figs. 2(c)-(e) for different weighting factors wr. In all 

cases experimental results validate the recurrent behavior of the neuron. Figure 2(f) illustrates the input signal when 

the w3xt
3 signal gets de-synchronized and delayed by 2T (800psec) with respect to the remaining three input signals. 

Figs. 2(g)-(i) show the obtained results for different wr weighting factors and different operational regimes of the 

sigmoid activation response, depicting that the RN can yield all possible output states between an output state that is 

 
Fig. 1. (a) Experimental setup used to valid the recurrent capabilities of the proposed RN, (b) Sigmoid transfer function of the activation unit. 
(c) 3-input weighted signals. Experimental time traces (200psec/div) obtained for the single-λ layout for the at the (d) input signal, and (e)-(g) 

output of RN for attenuation factors of: (e) wr=0, (f) wr=0.7 and (g) wr=1. y-axis scale: (3.5mV/div). (h) Panel summarizing operational 

conditions for both single-λ and WDM RN experiments.  

 
Fig. 2. (a) Spectrum of the WDM weighted input signals with a power contrast up to 8 dB. Time traces (200psec/div) for the the-(b) timely-

synchronized WDM input as well as the RN output with an attenuation factor of: (c) wr=0, (d) wr=0.7 and (e) wr=1. Respective results after 

inducing a delay of two time-slots to the wt
3xt

3
 signal are illustrated in (i)-(f). y-axis scale: (3.5mV/div) 
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identical to the input signal [Fig. 2(g)], an output state with gradually decaying recirculating pulses formed within 

the signal period [Fig. 2(h)] and, finally, a power-equalized pulse stream with a period equal to T. The operational 

conditions of the experiment are summarized in the panel shown in Fig. 1(h). 

4.  Training and inference of an RNN 

 The proposed recurrent neuron was trained with standard deep learning tools using the high-frequency limit order 

book dataset ( “FI-2010”) [11], in the context of financial prediction tasks. The complete architecture of the trained 

network, considering 32 RNs in total, is depicted in Fig. 4(a). The optimization ran for 20 epochs using the 

RMSprop algorithm with a learning rate of η=10-4 [12]. The photonic models were appropriately initialized by 

taking into account the behavior of the photonic activation function [5].  

The results for the FI-2010 dataset are presented in Fig 4(b). The performance of the proposed photonic recurrent 

neuron was also compared to an MLP baseline, as well as to an RNN model that uses the ideal sigmoid activation 

function instead of the photonic one. The precision score, which is defined as the number of correctly classified 

instances (true positives) over the total number of instances that the network classified in one specific class (true and 

false positives) is reported. The proposed Photonic RNN achieves an average precision score of 42.57%, 

significantly outperforming the MLP model (39.26%) while being also competitive to an RNN using regular 

sigmoid activations (42.60%). 

5. Conclusion 

We demonstrated experimentally the first all-optical recurrent neuron with a sigmoid activation function exploiting 

four WDM weighted input signals with 100psec optical pulses. The proposed neuron was trained using the FI-2010 

data set exhibiting an accuracy of 42.57%. The 4-input all-optical RN provides a computational efficiency of 40 

GMAC/sec and can presumably scale up to 32-input RN layouts by utilizing the proven capabilities of SOA-based 

nonlinear modules to perform over a broadband 32-channel regime [13], which would allow for 0.32 TMAC/sec 

computational efficiencies and 6.25pJ/bit energy consumption. Future on-chip implementation could also replace the 

fiber-based with integrated waveguide-based 1-bit recurrency, yielding energy efficiencies as low as 1.2fJ/bit by 

replacing the SOA devices with InP-on-Si Photonic Crystals that can provenly offer the sigmoid response [14]. 
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Fig. 4. (a) Recurrent neural network architecture and (b) Evaluation results for different neural network architectures. 


