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Abstract: We design a multi-layer photonic spiking neural network with excitable VCSELs-SA. 
Numerical results based on the rate-equation models show that the proposed neuromorphic 
network architecture is capable of solving the classical XOR problem by supervised-learning. © 
2020 The Author(s) 
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1. Introduction 
The electronic neuromorphic computing system has been extensively demonstrated based on complementary metal 
oxide semiconductor (CMOS) and the emerging memories [1-3]. As an alternative, the photonic platform has gained 
increasing attention for hardware neuromorphic computing, due to the fascinating advantages such as high speed, 
wide bandwidth, and massive parallelism [4-13].  In 2017, a new architecture for a fully optical neural network in a 
silicon photonic integrated circuit was demonstrated, which offered enhancement in computational speed and power 
efficiency [7]. In 2019, an all-optical spiking neural network (SNN) consisting of four neurons and sixty synapses 
based on phase-change materials was implemented on a nanophotonic chip [9]. Nahmias et al. developed an 
analytical model for photonic neuron based on the vertical-cavity surface-emitting laser with an embedding 
saturable (VCSEL-SA) [5]. It is well-known that the inhibitory synapse is usually required to realize the nonlinear 
separable problem such as the XOR task. Note, the inhibition is difficult to realize in the optical domain as there is 
no negative optical pulse. Very recently, we proposed to emulate the inhibitory dynamics based on the two modes 
VCSEL-SA subject to dual-polarized optical injection [10]. We further developed a computational model of all-
optical SNN for unsupervised learning, by incorporating the plasticity model based on a vertical-cavity 
semiconductor amplifier (VCSOA) [11].  However, a computing primitive and computational model for multi-layer 
photonic SNN consisting of excitable VCSELs-SA is still lack, and the hardware-friendly learning algorithm for 
multi-layer photonic SNN has not yet been addressed. 

In this work, we propose a hardware architecture and derive the system-level self-consistent model for a multi-
layer photonic SNN. VCSEL-SA and VCSOA are employed as photonic neurons and synapse, due to the advantages 
of low cost, low power consumption, and easy implementation of integration. Furthermore, a specific supervised 
learning algorithm, by the combination of the STDP rule and Tempotron rule, is developed for the proposed multi-
layer photonic SNN, taking advantage of the inhibitory dynamics of VCSEL-SA. The classical XOR problem based 
on the modeling-based photonic SNN is successfully realized. 

2. Hardware Architecture and Algorithm Co-design of proposed multi-layer photonic SNN 

 
Fig. 1. The architecture of the proposed multi-layer photonic SNN for solving the XOR task. 

To solve the nonlinear classification problem, we designed a multi-layer photonic SNN based on the excitable 
VCSEL-SA, as shown in Fig.1.  Here, 00 (P1), 01(P2),10 (P3),11(P4) are four input patterns. A bias (0) is added for 
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each pattern. The bit 0 (1) is pre-encoded as a rectangle pulse with central timing at 30ns (50ns). The rectangle 
pulses are then injected into the x-polarization (XP) mode of three VCSEL-SA (i.e., PREs), respectively, to 
implement spike encoding. The XP output of the input layer is then injected into both the XP and y-polarization (YP) 
modes of two VCSEL-SA in the hidden layer. Similarly, the XP output of the hidden layer is then propagated to 
both the XP and YP mode of the VCSEL-SA in the output layer. The target is pre-defined as follows. For the input 
patterns P1 and P4, the XOR result is 0, and the POST emits no spike. While for the input patterns P2 and P3, the 
XOR result is 1, the POST is allowed to emit spikes. 

Here, the theoretical model of photonic neuron is based on the combination of Yamada model and spin-flip 
model for a VCSEL-SA with two polarization-resolved modes [5, 10-11]: 
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Where subscripts i, ,h o  denote VCSEL-SA in the input, hidden and output layer, respectively. The third term in 
Eq.(1) represents the external stimulation for the XP mode and exists only for the input layer, where ( )injxF t is the 
external stimulating rectangle pulse and 0.5ixk =  is the stimuli strength. The last term in Eq. (1) (Eq. (2)) denotes the 
injection for the XP (YP) mode for the hidden and output layer, respectively. The initial value of ,hix ohxω , ,hiy ohyω is a 
random value ranging from 0 to 0.2. Other parameters and their values are chosen according to those in [10]. 

The synapse weight ,hix ohxω and ,hiy ohyω can be adjusted by repeatedly feeding the input patterns to the photonic 
SNN with supervised learning algorithm. In our proposed multi-layer photonic SNN, a specific hardware-friendly 
algorithm is required to adjust the weight for both the XP connection (from XP to XP) and the YP connection (from 
XP to YP). To this end, we design a supervised learning algorithm by modifying the Tempotron rule and the 
photonic STDP rule [11, 14-15]. The weight update amount xhiω∆ ( ohxω∆ ) between the XP mode of input and 
hidden (hidden and output) layers can be calculated as follows, 
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Where - ,  -hi h i oh o ht t t t t t∆ = ∆ = , it , ht  and ot denote the spike timing in the input, hidden and output layer, 
respectively. ,( )STDP hi ohtω∆ ∆ is employed as in [11]. =1dn ( 1 on = ) represents the target output (actual output) with 
spike emission, and =0dn ( 0on = )indicates target output (actual output) without spike emission. When o=dn n  , 

, =0hix ohxω∆ . =0.01fω is learning rate. Between a given pair of two layers, the weight update amount of the YP mode 
is the same as that for the XP mode, but the weight update sign is opposite. 
Namely, , _ , _ ,hix ohx new hix ohx old hix ohxω ω ω+= ∆  and , _ , _ ,hiy ohy new hiy ohy old hiy ohyω ω ω−= ∆ .  

3.  Numerical Results 

 
Fig.2. The inhibitory dynamics of VCSEL-SA subject to dual-polarized optical injection. (a) The exteral stimulation pulse timing for the 
XP mode and YP mode, (b) the response in the XP mode with 2| |x xI F= , (c) the peak intensity corresponding to (b). 
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At first, the inhibitory dynamics of the VCSEL-SA subject to dual-polarized optical injection is presented in Fig.2. 
Here, the external stimulation pulse for the YP mode is fixed at ty=47ns, while the stimulation pulse for XP mode is 
varied from tx=37ns to tx=57ns. It can be seen that, when tx < ty, the response in the XP mode is not affected by the 
stimulation pulse in the YP mode, and reaches its maximum. On the other hand, when tx > ty, the response dynamics 
is quite different. Within the range 48ns<tx <50ns, the response in the XP mode is significantly inhibited, the output 
intensity is very small, as the carrier numbers is reduced substantially due to the stimulation injection in the YP 
mode. After that, the peak intensity of XP response spike is increased gradually due to the carrier recovery. 

Next, the training process for the four different patterns is presneted in Fig.3 (a). It can be seen that, with the 
designed supervised learning algorithm to adjust the synpatic weight for both XP and YP connection, the targets for 
all the patterns are achieved after several training epochs. The evolution of the weight during traning is also 
presented in Figs.3(b) and (c). With these trained weight matrix, when the input pattern is P1 or P4, the POST emits 
no spike in the XP mode, while for the patterns P2 and P3, the POST emits spike in the XP mode. Thus, the 
proposed hardware architechture and algorithm for multi-layer photonic SNN is capable of sovling the XOR task.  

 
Fig.3. Training process for the XOR task. (a) The output of the POST for four patterns, 0 (1) represents without (with) spike emission, (b) 
the evolution of weight between the input and hidden layers, (c) the evolution of weight between the hidden and output layers. 

4. Conclusions 

We proposed a framework for the hardware architecture and learning algorithm co-design for a multi-layer photonic 
SNN consisting of excitable VCSEL-SA with two polarization-resolved modes. By designing specific hardware-
friendly supervised learning algorithm based on the photonic STDP rule, the proposed photonic SNN is capable of 
solving the XOR task.  
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