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Abstract: We introduce a stochastic version of extrinsic information transfer (EXIT) chart
which accounts for dispersion in finite-length LDPC decoding. The proposed approach
can design short LDPC codes systematically, achieving about 1.2 dB gain over recently
proposed scattered EXIT design. © 2020 The Author(s)
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1. Introduction
A great amount of efforts in developing high-gain forward error correction (FEC) codes has been put forward

next-generation optical communications, e.g., low-density parity-check (LDPC) codes [1–5], staircase codes [6,7],
turbo product codes (TPC) [8–10], and polar codes [11]. The design of short-length codes is of importance for
ultra-low-latency communications [12]. However, LDPC codes cannot be readily designed with existing methods
such as extrinsic information transfer (EXIT) chart which is based on the asymptotic (infinite length) behavior.
For finite-length LDPC codes, the decoding trajectories are deviated from the analytical EXIT curves as observed
in [15], where the convergence behavior was empirically analyzed using an “EXIT band chart”. In [16], the dis-
persion is theoretically analyzed to derive the lower-bound of block error rate (BLER), motivated by Polyanskiy’s
normal approximation (NA). Recently, in [17], a scattered EXIT (S-EXIT) based on empirical decoding trajectory
was introduced to design short LDPC codes. In this paper, we propose a new stochastic version of EXIT chart to
design finite-length LDPC codes. The proposed method extends the iteration-aware EXIT trajectory design [5] for
short LDPC code design, by introducing EXIT dispersion model. With the stochastic EXIT (St-EXIT), we can op-
timize LDPC codes under practical constraints of decoding latency and computational complexity by considering
the number of edges in bipartite graph and decoder iterations. We demonstrate that St-EXIT offers 1.2 dB gain
over S-EXIT design, approaching theoretical bounds.

2. Stochastic EXIT Design for Finite-Length LDPC Codes
Consider an irregular LDPC code having variable-node degree distribution λ (x) and check-node degree dis-

tribution ρ(x), where we use polynomial expressions; specifically, λ (x) = ∑d λdxd and ρ(x) = ∑d ρdxd denote
degree distributions for LDPC codes having λd fraction of edges associated with degree-d variable nodes and ρd
fraction of edges with degree-d check nodes. The extrinsic mutual information is asymptotically expressed as

Ivnd = ∑
d

λd · J
(√

(d−1)(J−1(Icnd))2 +(J−1(Ich))2
)
, Icnd = 1−∑

d
ρd · J

(√
d−1 · J−1(1− Ivnd)

)
, (1)

where J(·) is the J-function [13]. At a code length of N bits, the generalized mutual information (GMI) between
channel log-likelihood ratios (LLR) Ln and transmitted bits bn is given as

Ich(L;b) = 1− 1
N ∑

n
log2(1+ exp(−(−1)bn Ln) =

N→∞
1− E

L,b

[
log2(1+ exp(−(−1)bL)

]
. (2)

Note that the sample mean of channel GMI can approach the ensemble expectation if we have a large block length
N→ ∞. However, for short-block LDPC codes, there are finite LLRs per codeword, and thus the empirical GMI
can deviate from the nominal one. Fig. 1 shows the scattered EXIT chart [17] of variable-node decoder (VND)
and check-node decoder (CND) across belief-propagation (BP) decoding of N = 128 (4,8)-regular LDPC codes.
We can observe GMI dispersion from asymptotic EXIT curves due to the finite-sample mean.

In EXIT chart, L-value is modeled as a random variable following Gaussian distribution of Ln ∼
N ((−1)bn σ2/2,σ2) where σ = J−1(I). Therefore, finite-sample mean of GMI is also a random variable. Fig. 2
shows the channel GMI variance for N = 1,2,4, where we propose an accurate deviation model having a variance
of δM = 2.68I(1− I)/M for a nominal GMI of I and the number of messages M. With the deviation model, we
introduce a stochastic EXIT evolution where Ich, Ivnd and Icnd are propagated according to conventional EXIT in
(1) with modification by a random perturbation via Gaussian noise having variances of δN , δNd̄ , and δNd̄ , respec-
tively, where d̄ is the average variable-node degree. To track the nonlinear dynamics of extrinsic GMI distribution,
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Fig. 1: S-EXIT [17] of N = 128 (4,8)-regular LDPC.
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Fig. 2: Variance of extrinsic information.
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Fig. 3: Mutual information histogram over BP iterations
of N = 128 (4,8)-regular LDPC (decoding simulation).
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Fig. 4: Mutual information histogram over BP iterations
of N = 128 (4,8)-regular LDPC (particle St-EXIT).

we can consider unscented transform or particle representation. Fig. 3 shows the extrinsic GMI histograms across
simulated BP decoding. The unscented transform perfectly agrees with the distribution of initial decoding GMI Ich
with Gaussian variance of δ128, whereas heavy tail distribution at later decoding iterations cannot be well-modeled
by unscented transform. Fig. 4 shows the histogram of St-EXIT when using particle representation, i.e., Monte–
Carlo sampling, which shows a good agreement of the simulated histogram in Fig. 3. Unlike S-EXIT design,
St-EXIT does not need to simulate BP decoding but deviation model-based particle sampling. Given the number
of iterations, St-EXIT searches for optimal degree distribution by sweeping values in λ (x) and ρ(x) such that
expected bit-error rate (BER) of E[Q(J−1(Iapp)/2)] is minimized, where Iapp is the a posteriori GMI after particle
sampling with Q(·) being the Q-function.

3. Design Comparison: St-EXIT vs. S-EXIT
We first verify that our St-EXIT can predict more accurate performance for finite-iteration short LDPC decod-

ing. Fig. 5 shows the simulated BER performance of N = 128 regular LDPC code with 4-iteration flooding BP
decoding. BER predictions via conventional EXIT and our St-EXIT are also present. Since the original EXIT
assumes infinite-length codes, it exhibits a huge gap between simulation and estimated BER. Meanwhile, we can
observe that the St-EXIT can provide remarkably accurate estimates of BER performance.

In Fig. 6, we then compare BLER performance of short LDPC codes, which are optimized by conventional
EXIT trajectory, S-EXIT, and St-EXIT design methods. We use optimized degree distributions reported in [17],
where EXIT and S-EXIT designs are used to optimize N = 128 half-rate LDPC codes as follows (node-perspective
degree): λEXIT(x) = 0.245x+0.195x2+0.07x3+0.1x4+0.39x14,λS-EXIT(x) = 0.17x+0.27x2+0.08x3+0.14x4+
0.04x9+0.1x11+0.2x14. For St-EXIT, we imposed practical complexity constraint with limited average degree up
to d̄ = 3, and obtained an optimized degree: λSt-EXIT(x) = 0.75x2 +0.18x5 +0.07x8. For each degree distribution,
we evaluate BLER of 32-iteration layered decoding algorithm (LDA) for 100 LDPC codes ensemble, whose girth
is maximized through the use of progressive edge growth (PEG) [18]. From Fig. 6, one can see that S-EXIT
achieves a gain greater than 0.5 dB over the conventional EXIT design, that is consistent in [17]. Nevertheless,
they did not account for finite-iteration decoding. Our St-EXIT offers further improvement of 1.2 dB gain over
the S-EXIT, and approaches Gallager’s random coding bound (RCB) and Polyanskiy’s NA. More importantly, as
we considered average degree in design for low-complexity applications, our LDPC code (d̄ = 2.96) is roughly
two-fold faster decodable than the S-EXIT optimal code (d̄ = 5.77).
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Fig. 5: BER prediction via EXIT or St-EXIT of N = 128
(4,8)-regular LDPC code (4-ite flooding BP).
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Fig. 6: BLER comparison between EXIT/S-EXIT/St-
EXIT designs of N = 128 LDPC codes (32-ite LDA).
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Fig. 7: Performance and complexity tradeoff with vari-
able degree and decoding iterations (3 dB, N = 128).
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Fig. 8: Performance and latency tradeoff with variable
length and decoding iterations (N = 32,64, . . . ,1024).

In [5], we discussed Pareto optimization to jointly minimize BER and decoding complexity, which depends on
average degree d̄ and decoding iterations Nite. With St-EXIT, we can now consider also latency, which is a function
of block length N and iterations Nite. Fig. 7 shows the tradeoff between performance and complexity (O[d̄Nite]),
by varying degree distributions and decoder iterations. As mentioned in [5], more iterations with smaller aver-
age degree can outperform fewer iterations with larger average degree for some cases. Hence, we shall properly
optimize the degree distribution to achieve Pareto-front between the complexity and performance criteria. Fig. 8
shows tradeoff between BER and latency (O[NNite]) for the iteration-aware optimal degrees of different N and
Nite. It is found that more iterations with shorter codes can outperform fewer iterations with longer codes for
some cases depending on the latency requirement and target BER. It suggests that degree design, iteration counts,
and code length selection shall be jointly considered in Pareto sense to meet system requirement of performance,
complexity and latency.

4. Conclusions
We proposed a new stochastic EXIT design for finite-length and finite-iteration LDPC decoding. The introduced

particle representation of EXIT trajectory can track non-Gaussian dispersion evolution across decoder iterations,
and hence our dispersion model can accurately predict BER performance of short LDPC codes. We verified that
the proposed St-EXIT design offers higher performance up to 1.2 dB gain over recently introduced S-EXIT design
at 128-bit short block length. It was also discussed that the St-EXIT can account for Pareto-optimal LDPC design
to meet tradeoff among performance, complexity, and latency.
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