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1. Introduction

High-order quadrature amplitude modulation (QAM) formats combined with probabilistic shaping (PS) technique
have attracted a lot of attention in recent years. It enables at the same time high spectral efficiency (SE) and flexible
transmissions [1-3]. With the PS technique, adaptable transmission rates can be realized by adjusting the shaping
factor without forward error correction (FEC) modification [2,4].

Generally, the implementation of high-order modulation formats such as such as 64-QAM and beyond is often
a big challenge due to the requirement on high signal-to-noise ratio (SNR), high effective number-of-bit of digital-
to-analog converters (DACs) and analog-to-digital converters (ADCs), and good transceiver linearity, which yet
is practically limited by the imperfection of transceiver devices such as power amplifiers and optical modulators.
Thus, the nonlinear distortion is unavoidable in practical systems. The nonlinear distortion from the transceiver
can be compensated by using digital filters [5, 6]. Nevertheless, it is difficult to estimate exact coefficients of
these filters as the result of the nonlinear mixing from different devices of the transceivers, especially in a mesh
optical network. To partly deal with this problem, a recent machine-learning-based technique namely artificial
neural network (ANN) has been applied numerically for 64-QAM systems as a pre-distortion compensation [7].
However, this work only focus on the low resolution DAC at the transmitter side and ignore nonlinear contributions
from other components for a practical system.

The above-mentioned problem is predicted even more severe with the probabilistically shaped signals which
can be seen through the merit of peak-to-average power ratio (PAPR) in the third section. In this paper, we have
proposed, for the first time, the application of ANN for compensating coupled-nonlinear distortions from the
transceivers in PS systems. The proposed scheme was taking place at the receiver and experimentally verified for
dual polarization (DP) probabilistically shaped 28 GBaud 64/256 QAM transmissions. Experimental results show
that up to 1 dB SNR improvement can be obtained with ANN-aided nonlinear compensation (NLC) for such PS
systems.

2. System Description and Experimental Setup

The experimental setup of a 28 GBaud DP shaped 64/256-QAM back-to-back system is shown in Fig. 1. At
the transmitter, we deployed a probabilistic amplitude shaping (PAS) scheme with Maxwell-Boltzmann (MB)
distribution for probabilistically squared M-QAM generation [8]. The core element of the PAS architecture is a
distribution matching algorithm in which a desired constellation distribution can be created from information bits.
Square-shaped M-QAM symbols was generated by combining two independently shaped \/M-pulse amplitude
modulation (PAM) sequences which represent the real and imaginary components of their complex M-QAM
symbols. In this work, the nearly-optimum shaping factors were chosen from a ready-to-use table in [9] in which
a fixed probability mass function (PMF) can be used for a wide range of SNR with a negligible penalty (less
than 0.1 dB SNR). From Table 1 [9], there are only two nearly-optimal sets of PMF for each modulation format,
and we denote them as “ps-r1” and “ps-r2”, respectively in this paper. Their corresponding entropy in bit-per-
symbol, (H;;, H;»), for PS 64 and 256-QAM systems were (5.656, 4.910) and (7.572, 6.788), respectively. 10 %
4-QAM pilots were multiplexed with the shaped signals (i.e. 1 pilot in every 10 symbols) to aid digital signal
processing (DSP) algorithms at the receiver (both channel equalizer and phase noise compensation). The power
of pilot symbols was scaled to be as the same as the power of the shaped signal. A root-raised-cosine (RRC) filter
with a roll-off factor of 0.1 was then applied for the shaped QAM off-line, loaded into an arbitrary waveform
generator (4-channel 8-bit sampling at 56 GSa/s) and subsequently converted into the optical domain by using a
conventional DP optical coherent transmitter. To vary the received SNR, the DP optical signal was connected to
a variable optical attenuator followed by an Erbium-doped fiber amplifier (EDFA) before going to the coherent
reception.
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Fig. 1. Experimental setup for dual polarization probabilistically shaped 28 GBaud 64/256-QAM systems. (Inset) artificial-
neural-network-based nonlinear compensation (ANN-based NLC). ECL: External cavity laser, EDFA: Erbium-doped fiber
amplifier, VOA: Variable optical attenuator, OBPF: Optical bandpass filter, LO: Local oscillator, PDs: Photodetectors, OSA:
Optical Spectrum Analyzer.
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Fig. 2. PAPR comparison of QAM signal with and without probabilistic shaping. (a): 64-QAM, (b): 256-QAM

At the receiver, the optical signal was first converted into electrical signals by a local oscillator (LO), 90°
hybrid and four pairs of balanced photo-detectors. The electrical signals were captured and digitized by a real-
time oscilloscope with 8-bit sampling at 100 GSa/s before offline processing. The off-line DSP started with the
resampling to 2 samples per symbol. Then, the digital signals were formatted/scaled by a signal conditioning
module. Before the matched-filtering, the timing recovery and frequency offset error correction based on a Gardner
phase detector and a conventional Fourier-transform-based method, respectively were performed. A pilot-aided
channel equalizer based on a 21-tap constant-modulus algorithm was then carried out to cancel any linear effects.
The phase noise was estimated and compensated by using a conventional pilot-aided method (using 8 pilots in
each block of 71 symbols for a sufficient noise averaging). Before QAM de-mapping, the ANN-based NLC was
used to equalize the nonlinear impairment from transceivers.

As a supervised learning scheme, the ANN-based NLC was operated in two modes: training and testing
mode. In the training mode, all neural network parameters were optimized thanks to Levenberg-Marquardt back-
propagation algorithm with the aid of transmitted symbols. It aimed to minimize the error e = E{y — x}2, where
y and x were the received and transmitted QAM symbols respectively. A simple 4 x 4 feed-forward network with
10 neurons and 1 hidden layer was chosen to implement ANN based NLC as shown in Fig. 1 (inset). The acti-
vation function used in the hidden layer was hyperbolic tangent sigmoid transfer function, whereas 4 neurons of
the output layer used linear transfer functions. After training, the inverted nonlinear function f ! (.) reflecting all
coupled nonlinearities of the transceivers was carried out. In the operational (testing) mode, the received signals
were compensated as y = f; !(y). We assumed that the nonlinear distortion from transceiver was static or time-
slowly varying, the learning stage was therefore taking place one time at the best condition (highest SNR). This
training process may be repeated periodically if necessary (during initialization/calibration stages, for example).
The number of symbols for training phase was 2! in which the ratios of 70 %, 15 % and 15 % were dedicated for
the training, validation and testing, respectively.

3. Results and Discussion

To assess the performance of systems, we adopted the merit of normalized generalized mutual information (NGMI)
which indicates the maximum number of information bits per transmit bit. The NGMI is the most reliable figure
of merit to predict the post-FEC performance without the real FEC implementation [10]. NGMI thresholds used
in this paper for all comparison are 0.67, 0.8 and 0.91 (the family of low-density parity-check code rates [10]). For
each SNR, NGMI was calculated from around 59 000 shaping-transmitted symbols.

First of all, Fig. 2 shows the PAPR comparison between QAM signal with and without the constellation shaping
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Fig. 3. NGMI performance of the probabilistically shaped dual-polarization 28 GBaud transmissions with and without the
ANN-based NLC as a function of SNR under different shaping rates (“ps-r1” and “ps-r2”): (a): shaped 64-QAM and (b):
shaped 256-QAM.

after pulse shaping. For each modulation format, two shaping rates as mentioned in the section 2 were considered
for the comparison. The vertical axis is the complementary cumulative distribution function showing how often a
certain PAPR in the horizontal axis is exceeded. As both figures show, the shaping signals exhibit larger PAPR than
the unshaped ones and the more shaping, the worse PAPR. Specifically, at the same probability of 1 %, PAPRs
increase by 0.7dB and 1.5dB with the shaping rates of ps-rl and ps-r2, respectively for 64 and 256 shaped-
QAM in comparison with their unshaped counterparts. These increments indicate that linear operation ranges of
transceiver devices such DAC/ADC, power amplifiers and modulators need to be increased as well. Otherwise,
some nonlinear distortion may be introduced.

Fig. 3 shows the system’s performance with and without ANN-based NLC in term of NGMI versus SNR for the
DP probabilistically shaped 64/256-QAM back-to-back transmissions. For the shaped 64-QAM system (Fig. 3-
(a)), at FEC threshold of 0.91, there is a little improvement for the system equipped with the nonlinear compen-
sator, only around 0.1 dB SNR for both shaping rates ps-r1 and ps-r2 because the number of bits of DAC/ADC in
this experiment was high enough to support this 64-QAM signal and the modulator was calibrated well. At other
thresholds, no improvement was observed because the impairment was dominated by Gaussian noise.

On the other hand, the performance improvement the shaped 256-QAM system equipped with the ANN-based
NLC is significant, as depicted in Fig. 3-(b). In this experiment, we kept the same setup as the above system but
the order of the modulation format was increased from 64 to 256. The nonlinear distortion was therefore expected
to increase. Thus, the improved performance with the aid of NLC in this experiment is more visible, as shown in
this figure. Specifically, the SNR gains with the ANN-based NLC are around 0.3dB, 0.7dB and 1dB for three
above-mentioned FEC thresholds, respectively. More importantly, it can be seen that the NGMI improvement at a
same SNR is larger for the case of ps-r2 in comparison with ps-rl, which shows a good agreement with previous
conclusion that the deeper shaping imposes more nonlinear distortion from the transceivers.

4. Conclusion

We have experimentally shown an effectiveness of transceiver nonlinearity compensation based on ANN for the
probabilistically shaped 64/256-QAM systems. A SNR gain of up to 1dB was obtained for shaping systems
equipped with our proposed scheme. The results also indicate that transceiver re-calibration may be needed when
high-order shaped-QAM signals are present in the systems. Otherwise, additional DSP techniques like the ANN-
based NLC are necessary to be deployed at the receiver to compensate nonlinear distortion from the transceivers.
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