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Abstract: We use a neural network to inversely design a four-ring few-mode fiber for weak-
coupling optimization so as to support MIMO-less MDM optical communication. This method 
provides high-accuracy, high-efficiency and low-complexity for complexed fiber design. © 2020 
The Author(s) 

 
1. Introduction 

Inverse design has many advantages over traditional methods. For example, inverse design is helpful to break the 
fixed geometric structure of traditional devices and increase the parameter space of devices. This method can apply 
efficient optimization methods to achieve design automation, improve the device’s performance to its limit, and even 
achieve some significant functions that traditional device structures can hardly achieve. Therefore, inverse design has 
a tendency to replace the traditional complex physical design process and propose a set of simple and fast design tools.  

In recent years, inverse design has played a key role in the design of various photonic integrated devices. It can be 
used to form arbitrary structures, including particularly wavelength demultiplexer on silicon-on-insulator (SOI) [1], 
and ultra-compact power splitter with a QR code-like nanostructure [2]. This method brings a lot of convenience to 
device design with the aid of various algorithms, such as direct binary search (DBS) algorithm [2], genetic algorithm 
[3], and so on. Among them, neural network (NN) has lately received great attention for its high-efficiency and low-
complexity, and this algorithm has been used to design the integrated photonic power splitters in Ref. [4].  

Inverse design has been used early in optical fiber design, such as the optimization of chromaticity dispersion [5], 
and recently for nonlinear frequency conversion [6]. Nowadays, along with the advent of 5G era, the capacity of 
optical fiber system has been getting more tense, which makes few-mode fibers (FMFs) very attractive for next 
generation space-division-multiplexed (SDM) optical communication. Considering the mode coupling of FMFs, 
MIMO technology is usually used to compensate the crosstalk, while brings in high energy consumption and high 
cost. In MIMO-less MDM transmission, the minimum effective refractive index difference ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 among modes 
is the main factor causing crosstalk. Weakly coupled FMFs with low ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 and small crosstalk among different 
modes can ensure low bit error without MIMO at the receiver. An elliptical-core FMF realizes ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 > 10−3 to 
reduce the mode coupling between modes in Ref. [7]. And there are also many other special structures, like rod-
assisted FMFs [8] to achieve this goal. However, all these results employ the traditional physical model to increase 
the ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 . The structure is relatively simple with limited optimization capability, while the complex structure 
design will tremendously increase the difficulty.  

In this paper, we propose an inverse design method based on NN to optimize the structural parameters of ring-
assisted FMFs that can transmit four modes (groups), and ultimately realize ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 of 1.24 × 10−3. The advantage 
of this method is that the trained NN can calculate the optical fiber structure parameters corresponding to ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 
values simply and quickly. In theory it can realize optical fiber design with arbitrary ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 values, and can also 
be extended to a broad variety of fiber structures and parameters. 

2. Inverse design process and neural network structure 

Fig. 1 shows our main design process. Our objective is to optimize the weak-coupling performance of FMF. Obviously, 
the structure of the optical fiber determines its performance. So, we put the structural parameters into the simulation 
software to obtain the performance parameters. This forward design will produce a data set that can be used to train 
the neural network. In the inverse design process, we put our target performance into the trained NN to obtain the 
structural parameters. Finally, we can use these parameters to design FMFs that meet our initial requirements. 

In our specific design process, we choose a ring-assisted optical fiber that can transmit the first four modes (the 
fundamental mode 𝐿𝐿𝐿𝐿01, and the higher-order modes 𝐿𝐿𝐿𝐿11, 𝐿𝐿𝐿𝐿21 and 𝐿𝐿𝐿𝐿02). Its cladding is based on glass material, 
which has a refractive index of 1.445 at 1550 nm and a diameter of 125 um. The core of the optical fiber consists of 
four rings (shown in Fig. 2(c)), each of which has a core refractive index and a core radius. From the above analysis, 
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we can see that we should make ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 as large as possible. We can obtain ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 from the effective refractive 
index of the four supported modes in the FMF (shown in Fig. 2(a)). We put [𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4,∆𝑛𝑛1,∆𝑛𝑛2,∆𝑛𝑛3,∆𝑛𝑛4], into the 
simulation software (Lumerical) where 𝑟𝑟𝑖𝑖 is the core radius, ∆𝑛𝑛𝑖𝑖 is the refractive index difference between core and 
cladding, 𝑖𝑖 = 1, … ,4, and then obtain [𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,01,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,11,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,21,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,02], where 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚  is the effective index of the 
𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚  mode. We generate a data set, with 𝑀𝑀 = 6561 elements, setting core radius and refractive index difference to 
uniform distribution: 𝑟𝑟1𝑖𝑖~𝑈𝑈[7.2, 7.6]𝑢𝑢𝑢𝑢 , 𝑟𝑟2𝑖𝑖~𝑈𝑈[6.7, 7.1]𝑢𝑢𝑢𝑢 , 𝑟𝑟3𝑖𝑖~𝑈𝑈[6.2, 6.6]𝑢𝑢𝑢𝑢 , 𝑟𝑟4𝑖𝑖~𝑈𝑈[5.7, 6.1]𝑢𝑢𝑢𝑢 , 
∆𝑛𝑛1𝑖𝑖 ~𝑈𝑈[0.008, 0.012], ∆𝑛𝑛2𝑖𝑖 ~𝑈𝑈[0.0087, 0.0127], ∆𝑛𝑛3𝑖𝑖 ~𝑈𝑈[0.0094, 0.0134], and ∆𝑛𝑛4𝑖𝑖 ~𝑈𝑈[0.00995, 0.01395] for 𝑖𝑖 =
1, … ,𝑀𝑀. This process took about 18 hours by our personal computer.  

 
Fig. 1. Flow chart of the proposed NN assisted inverse design method. 

 
Fig. 2. The inverse design frame of NN. (a) The four modes (mode groups for LP11 and LP21); (b) NN structure; (c) 
4-ring FMF structure 

Then this data set is used to train the NN. As shown in Fig. 2, the effective refractive index of modes 
[𝑛𝑛𝑒𝑒𝑒𝑒𝑓𝑓,01,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,11,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,21,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,02] is NN’s input, and the FMF structure [𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4,∆𝑛𝑛1,∆𝑛𝑛2,∆𝑛𝑛3,∆𝑛𝑛4] is the output. 
We used Keras, an open source artificial NN library written in Python, to construct this NN. We used a sequential 
model with three hidden layers where each layer has 300 neurons. In this process, we tried to adjust different activation 
functions, so that the NN has better performance. The optimizer is Adam algorithm with good universal performance. 
Besides, we did a visual normalization to handle the original data for avoiding over-fitting. The training is terminated 
after a certain number of iterations. We can preliminarily determine whether the training effect of NN is perfect by 
checking the output relationship between the actual value and the predicted value. The number of iterations can also 
be adjusted within a certain range so that the error of training results can be within a relatively small range. The 
training took about 15 minutes. Then we formulated some data, [𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,01,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,11,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,21,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,02] , based on the 
optimization objective ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 and put it into the trained NN to get the predicted values of FMF’s structure. This 
process is almost instantaneous. The criterion for judging the perfection of the whole design is whether the difference 
between the pre-formulated 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚 values and the predict 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚 values obtained by putting the predicted structure 
parameters into the simulation software is small enough. 

3.  Results and analysis 

Element ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚  in the data set ranges approximately from 7.763 × 10−4 to 12.494 × 10−4. In order to satisfy the 
requirement of weak coupling, we drawn up 100 ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚  data in the range of (8.8 × 10−4, 12.5 × 10−4), and 
respectively formulated 100 sets of [𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,01,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,11,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,21,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,02] (∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 is a second-order parameter because 
there is no one-to-one mapping relationship between ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 and FMF’s structure, while 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚, which is directly 
related to the NN, is a first-order parameter). These are actual data, and predicted data can be obtained by the above 
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analysis. In order to evaluate the prediction accuracy of multiple sets of data, we use correlation graphs to compare 
actual data with predicted data. The correlation coefficient of the 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚 prediction is as high as 0.9997 for LP01, 
0.9996 for LP11, 0.9992 for LP21, and 0.9993 for LP02, indicating good predictability. And the correlation of 
∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 (index difference between different modes) is above 0.99 (shown in the Fig. 3(a)). It can be observed that the 
predicted performance coincides well with the original target performance. It allows us to make a judgement that the 
predicted structure can reproduce 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚 and ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚  in good agreement with actual data. For a larger formulated 
∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚, the predicted results are also good. For instance, when the actual ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 = 12.4943 × 10−4, the relative 
errors of the predicted value of 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚 are respectively 0.0025%, 0.0011%, 0.0002% and 0.0005%, compared with 
the actual value. At the same time, the relative errors of the predicted value of ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 are 1.16%, 0.73% and 0.85% 
(the predicted structural parameter and its corresponding mode curve are shown in the Fig. 3(b) and (c)). Therefore, 
NN provides a new method for inverse design of FMFs with robust reliability. 

 
Fig. 3. (a) Correlation diagrams between actual and predict data to evaluate the design accuracy. (b) The predicted 
FMF structural parameter. (c) The predicted dispersion curve and field diagrams for the four modes. 

By using NN in inverse design, we do not need to know the specific and complex mathematical or physical relationship 
between the structure and performance of FMFs. NN can automatically establish the mapping between input and 
output, which greatly facilitates our design. Besides, this method has a high universal applicability, because as long 
as there is a certain correlation between input and output, we can get an accurate prediction value by adjusting the 
weight of the NN. Once the NN is well trained, we can predict the structural parameters of the optical fiber 
instantaneously and this process is very fast. Compared with the traditional method based on physical principal [7, 8], 
the NN can get a relatively high accuracy result in a very short time. What’s more, for any given specific value, such 
as ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 in this work, the optimized optical fiber structure can be inversely designed theoretically by this method. 

4.  Conclusion 

We propose a novel method in this article to inversely design and optimize weakly coupled FMF. It has been 
demonstrated that neural network is an efficient tool to predict a ring-assisted FMF’s structures of arbitrary effective 
index of modes. In this way, we have successfully designed an FMF’s structure with a large ∆𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚  ( >
1.24 × 10−3). Obviously, this proposed method can play an important role in the inverse design of FMFs with its 
good accuracy and low complexity. 
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