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Abstract: We propose a receiver DSP based scheme to localize WSS anomaly in an optical link. 
Through extensive simulations, we show that the accuracy reaches up to 96.4% with a good 
generalization performance. © 2020 The Author(s) 
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1. Introduction  
The rapid progress of 5G, Internet of things (IoT), cloud computing and high definition online videos have raised high 
requirements for optical network’s flexibility, capacity and efficiency. To fulfill these requirements, the architecture 
of the optical network needs to be more dynamic and elastic. The widely deployed wavelength selective switch (WSS) 
in optical links and the design of low margin optical network [1] provide the needed dynamicity, flexibility and high 
spectral efficiency. However, new issues have also emerged. In particular, the established connections may be 
interrupted due to the anomaly of deployed WSS. Therefore, to ensure the quality of the communication, it is important 
to quickly localize the irregular WSS once it occurs. However, few researches have been conducted on this problem. 
Many relevant works mainly focus on the failure detection [2] and identification [3]. Besides, in some previous works 
[2], additional devices such as optical spectrum analyzer (OSA) are used, which increases the cost. Thanks to the 
capability of optical performance monitoring (OPM) provided by coherent receivers, it is possible to build the anomaly 
localization in a more cost-efficient way.  

In this paper, we propose a novel anomaly localization algorithm based on receiver DSP and artificial neural 
network (ANN). We monitor the power spectrum density (PSD) of received signals and the tap coefficients of the 
adaptive filter to get the location of the irregular WSS in the fiber link. Compared with [2], the information we used 
can be easily obtained from receiver DSP and no additional devices such as OSA are needed, leading to a low-cost 
implementation. In this paper, we explore two types of WSS anomalies: filter shift (FS) and filter tightening (FT). To 
validate the proposed scheme, we perform extensive simulations and demonstrate its high accuracy, scalability and 
superior generalization performance. 

2. Principles  

 
Fig. 1. Illustration of (a) FS anomaly and (b) FT anomaly. 

To localize the irregular WSS, it is important to obtain the information about the status of the fiber link. Such 
information can be obtained through optical signal spectrums using an OSA as described in [2] at the expense of 
additional hardware cost. Alternatively, we can measure the power spectrum density (PSD) of received signals using 
fast Fourier transform (FFT) in a coherent receiver. Fig. 1(a) shows the signal PSD when the FS occurs in different 
locations of the fiber link. To explain the principle, we take a link that consists of two WSS for example. As shown in 
Fig. 1(a), if the FS occurs in the first WSS, when it passes through the second WSS, the amplifier spontaneous emission 
(ASE) noise added to the edge part of the PSD will not be filtered. If the FS occurs in the second WSS, however, the 
ASE added to the edge of the PSD will be filtered in both the first and the second WSS’s. The principle for the FT 
anomaly is similarly illustrated in Fig. 1(b). Consequently, when the anomaly location is different, the interaction 
between the ASE and the filtering effect of the WSS is also different. As a result, such differences are reflected in the 
PSD, the auto-correlation function (ACF) of the received signal, and the converged tap coefficients in the adaptive 
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filter since the inter-symbol-interference (ISI) caused by WSS is different. Therefore, the localization problem can be 
addressed by analyzing these characteristics. 

 
Fig. 2. (a). The architecture of the proposed algorithm. (b). The pre-processing of the feature 

The proposed anomaly localization scheme is described in Fig. 2(a). The PSD, tap coefficients and ACF are 
extracted from the chromatic dispersion compensator (CDC) module, the adaptive filter and the carrier phase recovery 
module in the coherent receiver, respectively. An ANN is adopted, and it can be embedded in the on-board machine 
learning (ML) engine as described in [6] to provide fast localization processing. As shown in Fig. 2(b), the PSD and 
the tap coefficients are pre-processed before being used as the features to the ANN. The centroid of the PSD is 
calculated using 	𝑓#$%&'()* = ∫ 𝑓 ∗ 𝑃𝑆𝐷(𝑓)𝑑𝑓4∞

5∞ / 7∫ 𝑃𝑆𝐷(𝑓)𝑑𝑓4∞
5∞ 8 [4]. In addition, the 3-dB bandwidth of the PSD is also 

calculated. The minimum value, maximum value, average value, standard deviation of the tap coefficients and the 
ACF of the symbols after carrier phase recovery are calculated. Then all these features together with the span number 
between every two neighboring WSS’s and the total link length are input to the on-board ML engine to perform 
anomaly localization. The final output of the ANN is then sent to the link management module and then proper actions 
can be taken to recover the optical link. 

3. Simulation and results 
3.1. Simulation Setup 

The simulation setup is depicted in Fig. 3. The length of the fiber link is randomly chosen from 800km to 1200km 
with a fixed span length of 80km, and five WSS’s are distributed randomly in the link. The link length and the WSS 
location distributions are referred to as link configurations in the following discussions. To simulate the nonlinear 
impairments of the fiber, the split-step Fourier method (SSFM) with a step size of 20 m [5] is employed. At the end 
of each span, the loss of the fiber is fully compensated by an Erbium-doped fiber amplifier (EDFA) and the noise 
figure is 5dB. In our simulation, a single channel scenario is considered due to the slow simulation speed of the SSFM 
for wavelength division multiplexing (WDM) transmissions. The results should be applicable to WDM systems, 
because the WSS filtering is applied to each WDM channel independently. At the transmitter side, 35Gbaud PDM-
16QAM symbols are generated and then pulse shaped by a root-raised-cosine (RRC) filter with a roll-off factor of 
0.02. At the receiver side, after CDC, a matched filter is applied followed by a least-mean-square (LMS) based 
adaptive filter and a phase-locked loop (PLL). The adopted architecture of the ANN consists of one input layer with 
16 neurons and two hidden layers with 25 neurons for each. The neuron number of the output layer is 5, corresponding 
to the location of five WSS’s in the link. 

   
Fig. 3. Simulation setup. 

To train the ANN, 1200 data samples are generated under 120 different link configurations. For each data sample, we 
first randomly choose a link configuration and then randomly choose a shift value or bandwidth value from 14GHz to 
19GHz and 20GHz to 24GHz, respectively. Finally, 70% of the dataset is randomly selected for training and the left 
is for testing.   

To test the generalization performance of the proposed algorithm in different scenarios, we generate additional 
data samples modulated using PDM-QPSK, PDM-8QAM and PDM-32QAM. For each modulation format, the sample 
size is 225, and the distances are 640km, 800km and 1120km. To generate them, we randomly choose a distribution 
of WSS, and then either sweep the FS value from 14GHz to 19GHz with a step size of 0.2GHz or sweep the FT value 
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from 20GHz to 24 GHz with a step size of 0.2GHz. These data samples are never seen by the ANN, and thus they can 
be used to test the generalization performance of the proposed scheme.  

Another important scenario is that the anomalies of multiple WSS’s might occur simultaneously. We test our 
scheme in this scenario assuming two WSS’s are abnormal. For the FS, we first choose a 1200km link with PDM-
16QAM, and then set the FS of the fourth WSS to 16GHz when sweeping the FS of the third WSS from 15.5GHz to 
19GHz with a step size of 0.05GHz. For the FT, we set the bandwidth of the fourth WSS to 23GHz and sweep the 
bandwidth of the third WSS from 21.5 GHz to 25GHz with a step size of 0.05GHz. 

3.2. Results 
We first plot the learning curve of the proposed scheme in Fig. 4(a). The result illustrates that the algorithm has 
converged, and no overfitting occurs. In Fig. 4(b), the accuracy of the algorithm is shown, and the final accuracy 
reaches 96.4%. We believe the accuracy can be further improved by fine-tuning the architecture of the ANN, and this 
will be left for future study. We then try to use the principle components analysis (PCA) to reduce the computation 
burden and the storage requirements of the on-board ML engine. In Fig. 4(c), we plot the accuracy as a function of 
the preserved features. Note that originally we have in total 16 features. It can be seen from the figure, when the 
preserved number of features is 8, the accuracy can achieve 91.2%, and when the preserved number is 10, the accuracy 
can achieve 95%. In practice, the trade-off between complexity and performance should be made according to practical 
needs. 

                
Fig. 4. (a) The loss curves of training and testing. (b) The confusion matrix. The horizontal axis represents the actual location, and the 

vertical axis represents the estimated location. (c) The accuracy for different preserved number of features.  
We then test the performance when the trained ANN is applied to the PDM-QPSK, PDM-8QAM, and PDM-

32QAM with transmission distances of 640km,800km and 1120km. All these data samples are never be used in the 
previous training phase and testing phase. The results are summarized in Table 1, and high accuracy is also achieved, 
which indicating the good generalization performance of the proposed scheme.  

Table 1. The accuracy of the proposed scheme in new scenarios. 

                                
Fig. 5. Probability of the softmax layer for (a) different FS value;  

                                                                                                                                   (b) different FT value.  
Finally, we test the performance of the proposed scheme when multiple WSS’s are abnormal. The probability 

information of the softmax layer is used as described in [3]. Fig. 5(a) plots the result of the FS case. At first, the fourth 
WSS has a greater impact on the system than the third one. So, the probability of the fourth WSS is higher than the 
third one. As the FS value of the third WSS increases, the probability of it gradually exceeds the fourth. Similar result 
has been observed in the FT case as shown in Fig. 5(b). The results above demonstrate the proposed scheme can be 
extended to the case when multiple WSS’s are abnormal. 

4. Conclusion 
A WSS anomaly localization algorithm based on receiver DSP and ANN is proposed. We demonstrate its 

performance in terms of accuracy, scalability and generalization through extensive simulations in various scenarios. 
The accuracy is above 90% for most of the cases, indicating its high effectiveness in localizing the WSS anomaly. 
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Modulation Format QPSK 8QAM 32QAM 
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(a) (b) 

(a) (b) (c) 


