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Abstract: A machine learning method for Raman gain prediction and multi-pump broadband 

amplifier design is experimentally demonstrated over a 100 nm-wide optical bandwidth. We show 

high accuracy and ultra-fast prediction of arbitrary gain profile over a 100 km-long SSMF span.  
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1. Introduction  

After years of extensive research in coherent transmission technologies to maximize the spectral efficiency in long-

haul optical transport, ultra-wideband (UWB) schemes are currently gaining interest as a promising approach to extend 

the throughput of transmission systems [1-4]. Various solutions have been proposed to achieve UWB amplification, 

some of them with hybrid configurations using backward Raman pumping combined with either erbium-doped fiber 

amplifiers (EDFA) [3] or semiconductor optical amplifiers (SOA) [1,4] to improve end of link optical signal to noise 

ratio. To correctly predict the Raman gain in the hybrid amplification schemes, several methods have been proposed. 

Although the gain of forward or backward Raman pumping can be predicted by solving a system of nonlinear ordinary 

differential equations governing the evolution of power profile during the propagation [5], this method is time-

consuming and complex as the spectrum bandwidth extends beyond 10 THz and the number of pumps is increased. 

Machine-learning (ML) techniques have been recently proposed to achieve low-complexity methods to predict the 

Raman gain, exploiting training data sets coming from numerical simulations [6-8] or experimental measurements [9] 

over extended C+L systems.  

In this paper, we present our ML prediction method for UWB Raman amplifier design, based on an extensive 

experimental dataset, over a testbed using hybrid Raman SOA amplifier, with 100 nm S+C+L UWB spectrum and 5 

Raman pumps between 1410 and 1510 nm [4]. First we demonstrate the ability to use artificial neural networks (ANN) 

to predict the overall loss profile mixing fiber attenuation, inter-channel stimulated Raman scattering (SRS) and 

backward pumping, for any pump power configuration. Then, we use an ANN to design the UWB Raman amplifier, 

by providing the required pump currents to realize a pre-determined loss profile and experimentally validate our 

method. 

2.  Machine learning models for Raman amplifier design 

Our experimental setup is depicted in Fig. 1a. We used three different amplified spontaneous emission (ASE) noise 

sources and an UWB wavelength selective switch (WSS) to generate a 100 nm continuous spectrum, spreading from 

1515 to 1615 nm. This spectrum was amplified by an UWB SOA before being sent to the fiber under test, which is a 

100 km standard single mode fiber (SSMF) span and we used backward fiber Raman amplification with 5 pumps per 

polarization located at 1410, 1435, 1455, 1490, and 1510 nm. We use a 99/1 coupler, an optical switch and an optical 

spectrum analyzer (OSA) to obtain the UWB power spectrum at the span input. At the span output, the UWB signal 

was sent directly to the switch and the OSA. Input and output calibrated spectra are respectively shown in black and 

grey line in the top right inset of Fig. 1a. We define the span loss profile {𝐿1, … , 𝐿𝑚} as the difference between those 

power profiles, as represented in the bottom right inset of Fig. 1a. This loss profile accounts for the backward Raman 

pumping contribution which depends on the values of the 5 pump currents {𝐼1, … , 𝐼5} (we set the same current on both 

polarizations for each wavelength), but also for the fiber attenuation and the stimulated Raman scattering (SRS) 

occurring in high power UWB transmission, that can show a tilt exceeding 4 dB on such a 100 nm bandwidth [4].  In 

this work, we operated the SOA to provide at the fiber input a 21 dBm optical spectrum with a 6 dB tilt over the 

bandwidth, to meet the operation conditions of our previous transmission experiment [4]. We then randomly and 

independently chose the values of each of the pump currents {𝐼1, … , 𝐼5} from the uniform distribution 

𝑈([200,1500]𝑚𝐴) and measured 10000 random configurations. The data set has been arbitrarily split into 80% and 

20% for training and validation respectively. 

To model the system under test, the two ML models that we consider are represented in Fig. 1b. The first one is 

built to predict the loss profile {𝐿1, … , 𝐿𝑚}, when we feed the pump currents {𝐼1, … , 𝐼5} as an input. This generative 

model allows us first to reproduce the observation of our experiments, and later to predict the loss profile 

corresponding to unobserved pump current configurations. The second model is an inverse model: given a loss profile 
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{𝐿1, … , 𝐿𝑚}, the model is used to predict the pump currents {𝐼1, … , 𝐼5} to be applied. This model will be  useful for 

transmission line design, since we can use it to set the pump currents to reach a target loss profile. The bottom part of 

Fig. 1b represents the two multi-layer ANNs we consider in this paper. The ANN for the generative model (prediction) 

is composed of an input layer with 𝑛 = 5 neurons (corresponding to the number of Raman pump currents used in the 

experiment), an output layer with 𝑚 = 100 neurons (to compute the loss profile) and 2 hidden layers with 𝑝 = 150 

neurons. The ANN architecture for model the inverse problem (design) is composed of an input layer with 𝑚 neurons, 

an output layer with 𝑛 neurons and 2 hidden layers with 𝑘 = 300 neurons. The activation function was selected to be 

rectified linear unit (ReLU) for the hidden layers and linear for the output layer.  

 

3.  Prediction results and discussion 

After the training stage with 8000 files, to evaluate the performance of our ANNs, we use the validation set containing 

the remaining 2000 files that were unused during the training. First, for the generative model, for each pump 

configuration of the validation set, we predict the loss profile with the ANN. Fig. 2a shows the prediction error 

distribution for 10 wavelengths in the spectrum: the ends of the whiskers indicate the 5th and 95th percentiles of the 

population, the box captures the half population between the 1st and 3rd quartiles, and the horizontal line inside the box 

indicates the population median. Outside cross markers correspond to predictions that are considered as outliers. We 

observe that for all wavelengths, the median error does not exceed ±0.2 dB, and that 90% of the validation set show 

prediction error less than ±0.6 dB.  Fig. 2b shows the probability density function (PDF) and cumulative density 

function (CDF) of the root mean square error (RMSE) between the initial measured profile and the predicted loss over 

the whole validation set. The mean value of RMSE is 0.25 dB. Besides, the CDF indicates that 95% of the predictions 

give RMSE less than 0.51 dB. We plot in Fig. 2c the true spectrum (solid line) and the prediction of our ANN (diamond 

markers), for the best fit with a RMSE of 0.099 dB and for the case corresponding to the 95th RMSE percentile, i.e. 

with RMSE = 0.51 dB. This figure clearly illustrates the high accuracy of the prediction for our 100 nm-wide optical 

signal. 

Then, for the inverse model, for each measurement in the validation data set, we feed the loss profile as the input 

of the ANN and we predict the corresponding pump current configuration. To assess the performance of our ANN, 

we first show in Fig. 3a the relative current errors for the whole validation set: the prediction error for the 5 currents 

{𝐼1, … , 𝐼5} is less than ±13% for 90% of the cases. Then, for the 2000 files of the validation data set, we use the 

predicted currents in our experimental testbed and re-measure the obtained loss to observe the impact of current 

 
Fig. 2. Generative model prediction results. (a): loss profile prediction error repartition for 10 wavelengths in the UWB spectrum; (b): probability 

density function (PDF) of the RMSE and cumulative density function (CDF) of the RMSE of the prediction error; (c): initial spectrum and 

predicted profile for the best case and the 95th RMSE percentile. 

 
Fig. 1. (a) Single span characterization setup with 5 pumps Raman amplifier and SOA: span input and output power profiles are measured with 

the OSA (respectively labelled 1 and 2 in top inset) and span loss profile (bottom inset) is deduced. (b) ML models and artificial neural networks 

(ANN) architectures for span loss profile prediction (model A) and pump current value prediction (model B) 
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prediction error on the loss profile. We then compute the error between the initial profile and the re-measured loss. 

The loss error repartition is given in Fig. 3b: 90% of the examples show error less than ±0.9 dB, with 50% of the cases 

with ±0.6 dB error. The PDF and CDF of the RMSE are shown in Fig. 3c, showing good accuracy between target and 

re-measurement after current prediction, with mean RMSE of 0.41 dB, and 95% of predictions resulting in loss RMSE 

less than 0.74 dB. For this Raman design method, we attribute the worse performance compared to the generative 

model to the higher complexity of the prediction in the inverse problem and to the uncertainties of loss profile re-

measurements after pump current predictions. 

 

4.  Application for multi-span transmission 

In a multi-span experiment, we usually aim at setting the transmission line such that the power spectrum is identical 

at each span input, as shown in the inset 1 in Fig. 4a. With the power configuration described in our previous 

transmission work [4], we define our target loss as a linear profile with a tilt of 6 dB, yielding the power spectrum of 

the inset 2 of Fig. 4a at the next SOA input. We use the ANN of our design model to generate the corresponding pump 

current values, then measure the resulting loss profile and show the result in Fig. 3c (solid line). The measured loss 

profile shows good agreement with the target loss profile (dashed line), with limited ripples caused by multi-pump 

design, exhibiting a maximum error (vertical bars) of 1.52 dB and RMSE of 0.76 dB. Besides, improvement of our 

design method is expected from further optimization of the ANN architecture and learning parameters. 

5.  Conclusion 

We reported on the experimental demonstration of the use of artificial neural networks to learn the mapping between 

Raman pump currents and UWB loss profile over a continuous 100 nm-wide optical spectrum in a 100 km-long SSMF 

span. On the one hand, our method can predict the loss profile given an arbitrary pump configuration. On the other 

hand, we achieve accurate pump configuration prediction not only for random loss profile but also to be able to meet 

a target loss profile. This method will be useful for the design of Raman amplifiers for multi-span ultra-wideband 

transmission systems. 
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Fig. 4. (a): Power configuration for multi-span usage; (b): target, measured loss with currents given by ANN B prediction and resulting loss error 

 
Fig. 3. Inverse model design results. (a) pump current prediction error repartition; (b) loss profile error repartition after remeasurement with 

predicted currents; (c): probability density function (PDF) of the RMSE and cumulative density function (CDF) of the RMSE 

 

 


