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Abstract: We experimentally achieve a 19% capacity gain per Watt of electrical supply power in a 

12-span link by eliminating gain flattening filters and optimizing launch powers using deep neural 

networks in a parallel fiber context.  © 2020 The Authors 
 

1.  Introduction 

Massive spatial parallelism maximizes capacity and minimizes cost/bit of submarine optical cables under an electrical supply 

power (ESP) constraint [1]–[4]. The resulting optical power dilution among parallel fibers pushes transmission from 

nonlinearly-optimum launch powers into the linear regime. The logarithmic reduction in spectral efficiency resulting from 

a lower delivered optical signal-to-noise ratio (OSNR) per fiber is linearly over-compensated by the increased spatial 

multiplicity of the cable, yielding a higher total cable capacity [1], [2]. The capacity 𝐶 per Watt of ESP 𝒫𝐸  (both per spatial 

path) becomes a key figure of merit in such systems [4]: 𝓂 = 𝐶/𝒫𝐸 . This new metric asks for revisiting such fundamental 

topics as (i) the need for gain-flattening filters (GFFs) in optical amplifiers (as GFFs, used universally in submarine systems 

today, are lossy and hence waste ESP, thus potentially reducing 𝓂), and (ii) the optimum optical channel power allocation 

strategy. We address both topics and, on a 12-span 744-km straight-line system, experimentally achieve a gain of 19% in 

𝓂 by removing GFFs. Higher gains are expected for longer links and for pump-sharing architectures across amplifier arrays. 

Predicting the received (RX) signal and noise powers from arbitrary transmit (TX) power profiles through a chain of gain-

unflattened optical amplifiers is difficult, as a small change in the TX power spectral density (PSD) or in the spectral link 

characteristics causes a complicated evolution of signal and noise powers, making it intractable to computationally solve the 

problem using physics-based optical amplifier models. We therefore resort to machine learning [5] and build a deep neural 

network (DNN) as a digital twin of our optical fiber link. When trained with experimental link data, the DNN allows for an 

off-line gradient-descent (GD) optimization whose optimized results are verified experimentally. 

2.  Experimental Methodology and Setup

Massively parallel submarine cables will operate at low-enough optical signal powers to neglect fiber nonlinearities [2], and 

probabilistic constellation shaping allows to finely adapt each transponder to the SNR of a given wavelength channel [6]. 

This lets the delivered OSNR be a good basis for estimating polarization- and wavelength-division multiplexed (WDM) 

system capacities as 𝐶 =  2𝑅𝑠 ∑ log2(1 + 𝜂 𝑆𝑁𝑅𝑘)𝐾
𝑘=1 , where 𝑆𝑁𝑅𝑘  is the OSNR of the 𝑘-th of 𝐾  WDM channels 

(normalized to one polarization and a reference bandwidth equal to the symbol rate 𝑅𝑠), and 𝜂 ≤ 1 accounts for transponder 

implementation penalties. We use 𝜂 = 1 in this paper without loss of generality.  

In order to determine 𝑆𝑁𝑅𝑘 , we use the WDM channel emulation method shown in Fig. 1(a): Amplified spontaneous 

emission (ASE) from an Erbium-doped fiber amplifier (EDFA) is filtered by a wavelength selective switch (WSS) to 

generate 40 slots of 50-GHz ASE (emulating 40 signal channels, as is customary in WDM experiments [7], [8]), interleaved 

with 39 empty 50-GHz slots. For each channel, 𝑆𝑁𝑅𝑘 can then be estimated by an optical spectrum analyzer (OSA) taking 

the ratio of emulated signal power 𝑆𝑘 to ASE power 𝑁𝑘, interpolated between two empty slots, cf. inset to Fig. 1(b). The 

WSS output is boosted by a TX EDFA and attenuated by a variable optical attenuator (VOA) to produce a set of optical 

launch powers 𝑷1:40; we use the notation 𝑿1:𝐾 ≔ [𝑋1, … , 𝑋𝐾] throughout the paper. As an example, Fig. 1(b) shows a flat 

TX PSD across a 4-THz system bandwidth and the resulting RX PSD after 12 spans of 62-km Corning® Vascade® EX3000 

  

Fig. 1. (a) Experimental setup, (b) measured optical spectra at TX and RX OSAs. 
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fiber with 0.16-dB/km loss, padded by VOAs to a span loss of 16.5 dB in order to operate our 744-km straight-line system 

in a lower-OSNR regime pertinent to the targeted massively parallel submarine application [1], [2]. Since launch powers are 

low and fiber nonlinearities are negligible (as quantified below), padding at the beginning of a span is equivalent to padding 

at the end. Each span is followed by a custom-designed single-stage EDFA with a removable GFF.  

3.  Training the DNN with Experimental Data 

Since each of the signal and noise powers (𝑺1:40, 𝑵1:40) at the receiver depends on all TX powers 𝑷1:40 in a way that is 

difficult to accurately model based on amplifier physics, we resort to machine learning and construct a DNN as a digital 

twin of our experimental link. As shown in Fig. 2(a), our DNN has 40 input neurons (𝑷1:40), two hidden layers with 80 and 

120 neurons each, and 80 output neurons for the predicted signal and noise powers (�̃�1:40, �̃�1:40) at the output of the link. 

Linear, sigmoid, and softplus activation functions [9] are used. Numbers of neurons and activation functions are chosen to 

minimize the mean absolute error (MAE) [10] of measurement (𝑺1:40, 𝑵1:40) and prediction (�̃�1:40, �̃�40).  

The DNN training process starts by configuring one of two link setups (i.e., with and without GFFs) and choosing one of 

three ESPs 𝒫𝐸 , considering electrical pump powers and ignoring less fundamental overheads from amplifier control. The 

overall ESP is spread evenly across all 11 in-line EDFAs such that the optical output power 𝒫𝑂 = ∑ 𝑃𝑘
40
𝑘=1  is equal for all 

EDFAs. The TX VOA is adjusted to also provide 𝒫𝑂  at the TX. The EDFAs, when operated with GFFs, have a gain ripple 

< 2.5 dB across the 4-THz amplification band for all chosen operating conditions and operate at electrical-to-optical power 

conversion efficiencies of 3.1, 8.2, and 9.9% (measured after the GFF) for 𝒫𝐸 =1.09, 2.27, and 7.53 W. Next, we measure 

𝑺1:40 and 𝑵1:40 for 1440 randomly generated 𝑷1:40 at fixed 𝒫𝐸, and with a peak-to-peak channel power excursion ℱ =

max𝑖,𝑗(|𝑃𝑖 − 𝑃𝑗|) that we gradually increase from 6 dB to 45 dB; 5 representative instances of TX signal powers with ℱ = 

20 dB are depicted in Fig. 2(b). We avoid implausibly fast changes of 𝑃𝑘 over a narrow frequency range by applying a 

moving average to each TX power profile and ensure that the 1440 random power profiles uniformly fill the frequency-

power rectangle. Of the 1440 recorded data sets, 90% are used for training and 10% for validation of the DNN. For all 6 test 

cases, the DNN rapidly converges with a minuscule MAE difference between training and validation sets, indicating the 

absence of overfitting [11]. Figure 2(c) shows an example of TX powers 𝑷1:40(black pluses), and the measured RX PSD 

(black line; with 𝒫𝐸 = 2.27 W, no GFFs). The DNN-predicted �̃�1:40+�̃�1:40, �̃�1:40 (green circles, orange squares) show 

excellent agreement between measurement and prediction. The MAE of our DNN-predicted channel SNRs is ≤ 0.4 dB 

across a wide range of ℱ; for flat TX signal powers (i.e., ℱ = 0), our DNN yields mean and maximum absolute errors of 

0.2 dB and 0.5 dB in SNR prediction, while the OASIX, a state-of-the-art EDFA design software [12], produces those of 

1.9 dB and 4.7 dB, respectively. 

4.  Capacity Maximization and Verification 

We next perform gradient descent (GD) capacity maximization off-line based on the trained DNN, cf. Fig. 3(a). The result 

is a capacity-maximizing TX power profile 𝑷1:40. Figure 3(b) shows three example optimizations (𝒫𝐸 = 2.27 W, no GFFs), 

one starting from a flat 𝑷1:40 (blue) and the other two from initial conditions with poorer capacity. Irrespective of the starting 

condition, the DNN converges to the same optimized system capacity, a fact that is even more impressively shown in 

Fig. 3(c), giving initial (blue crosses) and converged (orange dots) capacities for all 1440 randomly chosen initial TX power 

profiles with varying ℱ (red dots). Converged SNRs are shown in Fig. 3(d) across the system bandwidth. The converged 

SNR distribution is flat to within 4 dB in most cases, with minimal capacity variations between these converged solutions. 

The capacity for a completely flat RX SNR is 25.6 Tb/s, which is close to the experimental optimum of 25.9 Tb/s. The 

capacity of a flat TX signal power profile is 24.8 Tb/s and that of a flat RX signal power profile is 24.5 Tb/s. This is in 

contrast to the findings of Ref. [13] for systems using GFFs, where all three power profiles yield about the same capacity. 

Importantly, our approach does not subjectively favor any capacity optimization strategy based on possibly misguiding 

intuition, but blindly optimizes TX signal powers for maximum capacity. Note that an experimental GD solution is uniquely 

enabled by our DNN approach, as estimating only a single gradient requires 41 measurements of 4-THz RX PSDs. As in 

 

Fig. 2. (a) Structure of the DNN, (b) five random TX power profiles 𝑷1:40 with ℱ = 20 dB, and (c) an example of TX powers 𝑃𝑘 (black pluses), 

measured RX PSDs (solid lines), and DNN-predicted signal+noise �̃�𝑘 + �̃�𝑘 (green circles) and noise �̃�𝑘 (orange squares). 

𝑃1

𝑃40

𝑆 1

𝑆 40

�̃�1

�̃�40

120 808040

Number of Neurons

(a)

𝑃
𝑘

(d
B

m
)

0

-10

-20

(c)

10 20 30 40

(b)

𝑘

ℱ
(d

B
)

𝑆 𝑘 + �̃�𝑘

�̃�𝑘

𝑃𝑘

192 193 194 195
Frequency (THz)

-20

0

-40

-60

P
o
w

e
r

(d
B

m
/G

H
z
)

196



W1K.2.pdf OFC 2020 © OSA 2020

our fully automated system we measure 180 RX PSDs per hour, it 

would require >11 years to perform the full GD optimization for 1440 

TX power profiles with 300 GD iterations! On the other hand, using 

the DNN approach, the optimization process takes only 9 hours. 

This >10,000× speed-up impressively reveals the power of machine 

learning in this application. 

As a last step, we validate the results of the DNN-based GD 

optimization by loading the optimized TX power profiles onto the 

experimental system and measuring the RX power profiles. The 

capacity predicted by the DNN is within a 1.1% error of the 

experimentally measured capacity in all test cases. Figure 4 shows the 

actually measured capacity 𝐶 (left axis) and the figure of merit 𝓂 (right axis). Dashed red lines represent systems with GFFs 

and solid blue lines without GFFs, all with optimized TX power allocations. The experimental results show that: (i) systems 

without GFFs achieve a higher power efficiency than systems with GFFs, (ii) 𝓂 increases with decreasing 𝒫𝐸 until the 

EDFA pump current approaches the pump’s lasing threshold, even at a significantly reduced EDFA power conversion 

efficiency of only 3.1% at that operating point; operating the pumps at higher power (and hence at higher efficiencies) and 

sharing them across multiple EDFAs will further increase 𝓂; and (iii) when the system operates at maximum efficiency (at 

largest 𝓂), both 𝐶 and 𝓂 can be increased by 19% by eliminating GFFs from the system. For the most energy-efficient 

case of 𝒫𝐸 = 1.09 W, we also verify that the maximum channel power anywhere along the link for the optimized power 

profile is below -4 dBm per 50 GHz, both with and without GFFs. This quantitatively justifies neglecting fiber Kerr 

nonlinearities, as this system operates 7 dB below a deployed 5,500-km cable that shows nonlinear peak performance at 

3 dBm per 50 GHz [8]. 

5.  Conclusion 

We used experimental signal and noise data from a 12-span 744-km straight-line EDFA link to train a DNN as a digital twin 

of the experimental system. The DNN accurately predicts RX signal and noise powers for arbitrary TX signal powers. A 

gradient descent-based TX power profile optimization performed on the DNN is about 10,000× faster than what would be 

possible using measurements alone, and objectively optimizes TX power profiles. In the context of a massively parallel 

ESP-constrained system (submarine optical cables), we demonstrate a 19% capacity improvement by removing GFFs. 

We acknowledge Amonics Corp for supplying the EDFAs with removable GFFs, and Corning for the loan of the EX3000 fiber used in this experiment. 
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Fig. 3. (a) Optimization using DNN and GD and (b) convergence of the GD for 3 representative initial conditions; (c) capacity of the initial (blue 

crosses) and converged (orange dots) TX power profiles and (d) optimized RX SNRs, both for all 1440 random TX power profiles. 
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Fig. 4. Optimized 𝐶 (crosses) and 𝓂 (circles) as a function 

of the total electric pump power in systems with (dashed 
red) and without (solid blue) GFFs. 
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