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1. Introduction

According to the recent data traffic predictions, current optical communication systems, operating in the C—band
only, will not be able to satisfy future data rate demands [1]. A viable and long—term solution would be to employ
systems operating in multiple bands (O+E+S+C+L) [2] and make usage of the spatial division multiplexing (SDM)
(multi—core and multi-mode) [1]. Designing optimal signaling and detection schemes, for such systems, will be
challenging due to the high system complexity. Moreover, optimizing amplification schemes would require fast
tuning of a very large number of parameters as arbitrary gain profiles will be highly desired. Finally, performing
system optimization in terms of channel power and bandwidth allocation, as well as modulation format selection,
will become difficult using standard tools that rely on analytical or semi—analytical models.

Another important aspect is the requirement on providing secure communication, and this is where quantum
technologies come into a play [3]. Quantum key distribution (QKD) technology is a key component in securing
future communication systems. There are two main flavours of QKD, discrete variable and continuous variable,
(DV-QKD) and (CV-QKD), respectively [3]. The advantage of CV-QKD is that standard telecom components
can be used, making the systems more affordable. Moreover, CV-QKD relies on coherent detection and digital
signal processing (DSP) techniques, resembling the classical coherent communication systems to a large extent.
This implies that the know—how obtained from the classical coherent communication systems over the last ten
years can be reused. There are however, also, significant differences between the classical and quantum optical
communication systems.

In classical optical communication, it is common to amplify the signals as they propagate through the optical
fiber. The optical signal power at the receiver can therefore be restored and the mean photon number per bit can
easily exceed 1000, translating into moderate values of signal-to-noise-ratio (SNR). In quantum communication,
the SNR is low because most quantum protocols work with less than one photon per symbol in average and
also because optical amplification is not allowed as it would destroy a quantum state. Therefore, for applications
in quantum communication, and optical communication where optical amplifiers cannot be used (e.g. in space
communication), the systems are quantum noise limited. Moreover, the requirements on the level of accuracy of
optical phase noise tracking for CV-QKD are significantly more stringent compared to classical systems [9]. This
implies that quantum-noise limited performance of optical phase noise tracking needs to be achieved from optical
signals having significantly lower power levels compared to the signals in classical optical communication.

The field of machine learning (ML) can provide useful tools to address the aforementioned challenges. This
is because ML techniques excel at: 1) learning highly—complex input—output mappings which allows for system
optimization [4-6], 2) learning signaling and detection schemes for complex channels or for channels where
analytical models are not available [7, 8], and 3) performing ultra—sensitive signal detection [9, 10]. In this paper,
it will be demonstrated how multi-layer neural networks, which are one of the most popular machine learning
technique nowadays, can enable an inverse system design (ISD). For the ISD, we are given a target (desired)
output and the task is to determine the corresponding set of inputs. The ISD is highly relevant for the design of
ultra-wide band Raman and SDM amplifiers where a large number of pumps needs to be adjusted to produce a
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Fig. 1. Illustration of the machine learning based approach for the inverse system design [4].

desired gain profile. Moreover, we will show that Bayesian inference, an important ML technique, can enable
accurate optical phase tracking yielding quantum-noise limited bit error rate (BER) performance.

2. Inverse system design

In the inverse system design, we are given a target output Y’*"$ and the objective is to determine the corresponding
input X'#8_ The forward mapping is denoted by Y = f(X) and, to determine X'*'8, the inverse (backward) mapping
function f~!(-) needs to be determined such that X'¥¢ = f~1(Y’%’8). In many cases of interest, the forward
mapping function f(-) is highly complex and described by a set of nonlinear differential or integral equations that
must be solved numerically. Moreover, for some system, f(-), may even be unknown. Such cases may arise for the
experimental implementations of optical communication systems. Therefore it is very challenging, and in some
cases impossible, to obtain an expression for the gradient and apply standard least-squares optimization techniques
to find X%’

We have recently proposed a machine learning based framework, illustrated in Fig. 1, for the ISD [4]. The
procedure is as following. First, a training data set containing the inputs, X € R¥*!, and the outputs, Y € R¥*! of
the system is generated: 2K*(V+M) = £YT XT'|k = 1,...,K}, where K is the size of the data set, N is the number
of inputs and M is the number of outputs. In the simulation environment this is achieved by running the system
model described by f(-). In the experimental environment this is achieved by exciting the system with a set of
inputs and measuring the desired outputs. Given the data set 2 we can build a multi-layer neural network that
learns the inverse mapping from the data, i.e. X = NN, (Y) = f~!(Y). An ultra-fast prediction of X'¥¢ given
Y8 can then be achieved as X'¥"8 = NN, (Y'“¢) only contains matrix multiplications.

If the accuracy of NNy, (-) is not satisfactory a gradient descent or some other optimization algorithms can be
employed to perform fine-adjustment of the input X'“"8. The error is defined as the difference between the output
Y = NNp, (X'*¢) and the targeted output Y’“’$. This implies that a multi-layer neural network learning the forward
mapping, Y = NN, (X) first needs to be built. Since NNy,,(-) contains matrix multiplications, the gradients can
be computed and the optimization can be performed. This is illustrated in Fig. 1.

We have recently used the proposed framework for the pump power and wavelength allocation that would result
in a desired arbitrary gain profile of the Raman amplifier operating in C and C+L bands [4]. A low mean (0.46
and 0.35 dB) and standard deviation (0.20 and 0.17 dB) of the maximum error for numerical (C+L-band) and
experimental (C—band) results, respectively, when employing 4 pumps and 100 km span length was demonstrated.

3. Optical phase tracking at the quantum limit

To investigate the performance of the optical phase tracking at the quantum limit, the experimental setup consisting
of two independent lasers and a quantum-noise limited balanced receiver (1.1 GHz 3 dB bandwidth) followed by
an analogue-to-digital converter (10 GS/s) for beat signal digitization is employed. The binary phase shift keying
(BPSK) data encoding is performed after the beat signal has been digitized. The post-modulation technique avoids
non-idealities originating from optoelectronic components in the system which can induce an implementation
penalty. Since it is not possible to distinguish if the source of penalty is the optical phase tracking algorithm or
the component non-idealities, the post-modulation is justified — we are mainly interested in knowing the limits of
the proposed optical phase tracking framework. For the optical phase noise tracking, we use a Bayesian inference
framework that relies on the Unscented Kalman Filter (UKF) in combination with Monte Carlo Markov Chain
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(MCMCO). The input signal power is varied from 32 pW to 2.1 nW (-75 dBm to -59 dBm), corresponding to SNR
levels in the range from -11 dB to -7 dB in 1.1 GHz bandwidth. In reference [10], we have shown that quantum
noise limited BER performance is achievable using the employed phase noise tracking technique.

To investigate if the Bayesian inference framework for phase noise tracking can provide quantum noise limited
performance, its variance needs to be compared to the theoretical quantum-limited variance for the heterodyne
measurement. The quantum noise limited variance, GéL, corresponds to the minimum obtainable mean square

error (MSE) for a given measurement setup. The MSE is defined as GéL = MSE = E[(¢}"™ — ¢¢*")?], where ¢}
is the true phase noise, ¢¢” is the estimated phase, E[] is the expectation operator and k is the discrete time index.

For a time-varying phase the quantum-limited variance for a heterodyne measurement employing statistically
optimum phase estimation has been derived to be: (FéL = 1/4/2Nay [11]. Here, Noy, = P;/hfAv is the average
number of photons per coherence time (the laser linewidth Av is inversely proportional to the coherence time). It
should be emphasized that the quantum limit calculated by GéL assumes a Wiener process model of laser phase
noise. For this model, the corresponding frequency noise (FN) spectrum is flat, and its magnitude corresponds to
the laser linewidth. However, the Wiener process model is just an approximation to a true laser phase noise. Typi-
cally the laser FN spectra is not flat and therefore a conversion of FN spectra to linewidth or direct measurement
of laser linewidth is necessary. The direct measurement of laser linewidth requires radio frequency (RF) spectrum
analyzers with very high resolution, especially if the laser linewidth is well below 1 kHz. Lasers used for quantum
communication have low phase noise making the linewidth measurement using RF analyzers challenging. A so-
lution is to make a conversion from FN spectra or phase noise (PN) spectra to linewidth as highly accurate large
bandwidth phase noise measurement can be obtained using Bayesian filtering [10].

The challenge is then how to convert the FN or PN spectra to linewidth. Although several solutions in the liter-
ature have been proposed, all these solutions are approximate and their accuracy decreases for small linewidths.
It is therefore difficult to compute the theoretically achievable quantum limited variance GéL and to benchmark
various phase noise tracking schemes.

4. Conclusion

Next—generation optical communication systems will need to provide large data rates as well as a secure way of
transmitting the information. This implies a coexistence of classical and quantum signals for which reconfigurable
and artificial intelligence (Al) enabled digital coherent receivers may play an important role. In this paper, we have
given some successful examples of how machine learning techniques can enable the design of C+L-band Raman
based optical amplifiers as well provide phase tracking schemes that enable quantum limited system performance.
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