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Abstract: High bandwidth demands combined with low latenpplications lead the move from
centralized cloud to distributed Edge Computing. W&cuss how this paradigm shift impacts
network interconnects design and the key netwaakufes to truly enable 5G and beyond. © 2020
Nokia Bell Labs

1. From centralized to distributed Edge Data Centers:

In the past decade, research has been active orscadd data center switching fabrics, especiallynetworking
solutions capable of delivering high switching cz@ipawhile ensuring low latency. Today, large dataters (DC)
is still a hot topic, and players such as Faceljhplnd Google [2] are periodically (e.g., everyéears) redesigning
their intra DC network to cope with the ever-grogvibemands of scale. Bandwidth demand increase isntyp due
to users’ proliferation but also to the start deimsive use of machine learning (ML) and artificigkelligence (Al);
Facebook declared that Al inference demands ardlidgueach year in their DCs [3]. Google statedt tha
workflow currently communicates with thousands efvers and each server is hosting hundreds of Veovkf and
in the next decade, those numbers are expectee 1@® folds. The main foreseen possible solutiortsetp large
DCs to scale are disaggregated [4] and distribfEedomputing.

In parallel with large DC evolution, the emergerde5G opened the opportunity for a new generatibtime-

sensitive and contextualized-experience applicatidnnew type of DC had to be proposed; the Edgefd®&dge
Computing. The principle of Edge Computing is tduee propagation delay (1ms target) by storingmodessing
time-sensitive data closer to the user. The coragzpiis a DC architecture shift, from a fully cafized to a highly
distributed computing environment. In [6] the asption is that by 2025, 80% of enterprises will hateit down
their traditional DC, versus 10% today. [7] deseslihe ultimate Edge Computing as an aggregatodge and
compute resources, regardless of their distribngedre, acting as a single fabric used to delieevises.

Even if the scale of a single Edge DC is many ardelow a large DC, large scale distributed Edgm@ding is
comparable to large DC in terms of scale and coxtyleEdge computing will inherit from technologlcadvances
such as hardware disaggregation but will be cotdamo performance issues such as latency cof@joéxplains
the impact of the lack of latency control on laggale DCs. For an online service, user requests$ beusatisfied
within a specified latency target; the completengfsthe responses directly impacts the quality eige and in
turn, the operator revenue. Furthermore, horizasttalability entails that online services have ditian-aggregate
workflow [9] (e.g., Hadoop). Application latencyrg¢gets cascade down to targets for workflows at déapbr. Any
network workflow is associated with a deadline. Therkflow is useful and contributes to the applicat
throughput if, and only if, it completes within tdeadline. Targets are in the range of 10 to 1(J@msvhich leaves
only a fraction of this latency target to the netvo

In [10], authors further explain that not only aage latency matters but its variation can haveamgtimpact inside
the DC. Latency control is considered so crucialifberactive applications, that software buildbese used very
complex techniques to compensate for the networfopeance uncertainty. In [10], Google considertvgare
techniques that tolerate latency variability vital building responsive large-scale services. Atghnake the strong
statement that even rare performance hiccups adfesitjnificant fraction of all requests in largexdecdistributed
systems. They claim that it is challenging for servproviders to keep the tail of latency distribotshort for
interactive services as the size and complexitthefsystem grows. This is even true in an envirgringnning
complex time-sensitive applications over a larggritiuted Edge Computing network.

This sets a clear challenge on distributed DC emwirent, especially on network interconnects, tdvdela
deterministic low latency, as highlighted by Gooflé], Facebook [3], and Alibaba [12]. We highligh&t in the
context of distributed Edge Computing, the “networterconnect” must be considered as an end-toséndture
combining both intra and inter DC interconnects.

In the following, in Section 2 we review the diriects of technological evolution in distributed D&a and their
impact on network interconnects’ design. In SediBnand 4, we discuss the key enablers of disgtb@Cs and
present Dynamic and Deterministic Network (DDN)pasandidate for the Edge Computing network intemegh
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2. Impact of distributed Edge Computing on DC network design:

In this section, we discuss the impact of DC hardwdesign and applications’ migration towards ihsted Edge
Computing on network interconnects.

Online gaming: Cloud gaming (e.g., XCloud by Microsoft, Stadia®oogle), relies entirely on Edge Computing to
replace users’ hardware, and on the network tofatte the Edge with users’ display. The burdemishe network
to deliver fast communication. In [13], Deutschdekem explains that an end-to-end latency of 50r80ensures a
smooth gaming experience, while a latency of 12Mhotgeably impacts responsiveness. In cloud gapmiagonly
latency matters, but jitter is even more importavierage latency may be low (below 50 ms), but pedkiO0 ms
will heavily impact the gameplay. Moreover, to kel gameplay fair across players, the network rdesver
consistent latency and jitter to all users.

Data analytics. “Data is priceless in the seconds after it'sem#d, any latency introduced by the network will
make that data losing of its value” [14]. Real-tiofeta analytics requires low latency since thevededid output is
used to interact with a user/system. Hence, lateloye the shift of data analytics execution fromeatralized
approach in large scale DC that was delaying timesk of the analytics (up to 19 folds) [14], toistributed
approach over Edge Computing. Data analytics intwasd challenges on the network interconnect: ghHi
bandwidth combined with low latency, as required\adeo analytics — qualified as the killer apptica for large
distributed Edge Computing by Microsoft [15]; 2)Meving real-time analytics systems with high aecyr
outputs; accuracy is directly impacted by the delsstween a video frame capture and its processing;
3) Synchronization of data access between datgtasajobs to avoid job blocking by the slowest oAecommon
solution to face these challenges lies in contrglliatency. Network interconnects should providésdministic
latency that can be tuned through resource schred(dig., [15] for analytics accuracy).

Distributed Deep Learning (DL): Originally, DL models training (e.g., used fortaleanalytics and intelligent
manufacturing) moved from centralized DC to Edgen@ating to avoid costly migration of large amouatdata
across the network, and enable faster inference Reécent DL technique advances made online anernimental
learning possible. By moving to the edge, DL cdmetadvantage of the large and contextualized datargted by
the geo-distributed devices. Additionally, trainiadarge DL model generally requires important catafion power
(thousands of CPUs). Distributed computing faddisathe training process by taking full advantagearallel
GPUs [17]. The network interconnect needs to delioe and controlled latency over distributed Edg@mputing
to enable a single computing fabric view for DL Bggtions.

Disaggregated hardwar e and high-performance storage: For high-performance computing using disaggretjate
hardware, applications such as large-scale maddamaing training (e.g., running on GPUSs) transéege volumes
of data. Given that data storage and computatieedgpare considered very fast, the performanckhetk is the
network interconnect [12]. In [12], Alibaba pointedt the challenge to reconcile low latency anchibgndwidth
utilization. In a high-speed DC environment, cotiges can rapidly occur when flows start at lineerand
aggressively grab available network capacity. Cetige cannot be afforded for applications such ashime
learning that typically ask for an average laten€y00 ps and expect a tail latency of g0for remote memory
access. More generally, according to [12], resodisaggregation requiresys network latency to maintain good
application-level performance. Optimally, networksould not be optimized only to deliver traffic st as
possible, but they should aim to deliver it justime to compute resources [18]. A data flow carpberitized by
the network to reach a busy compute resource aexpense of other flows. The overall performanceldde
improved if the network was aware of computing tese state and be scheduled to deliver data jusnhim

Industry 4.0: The main benefit of introducing edge cloud (foftaare and control execution) to the industry vebul
be an optimized and timely coordinated productibair with reduced downtimes [19]. In [20] two clealyjes are
highlighted in the factory floor to support reaht services (Augmented Reality, Remote robot syséem motion
control): 1) achieve low and strictly deterministitency, and 2) achieve high-precision time syootmation. To
truly enable the @revolution of the industry, network interconnesith deterministic latency is key.

3. Enablersof deterministic distributed Edge Computing:

Given the observations previously made on the iphdistributed Edge Computing on network intencects, we
claim that three network features are essentiahtible a deterministic DC environment.

Time dlotted access: Handling low latency applications with fixed @t and low packet loss ratio will be
complicated and expensive through L2/L3 mechanismig without any form of hard pipe enforcements][19
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Inside the DC, many efforts to control congestiéijl2][21][22] have been proposed, but none wadigaht to
deliver the required deterministic performance. Dy way to achieve strict control of latency lsdugh time-
slotted networks where a fraction of network researcan be scheduled on a per-flow basis.

Real-time control plane and scheduling: In Edge Computing, processing and schedulingn&tecannot
directly benefit from the closer deployment of D®¢hen so many efforts have been made to reduceoeaded
propagation latency to less than 1 ms on the omel laad to increase link speed, on the other haraedomes
essential to reduce the time for control plane comication and resource scheduling decision [23]

Cross-domain, cross-layer end-to-end orchestration: As mentioned by A. Vahdat in [11], performancdyon
matters if it can be ensured end-to-end. This appido both 1) cross-network domains [24]: thera iseed to
coordinate allocation from computing resource déavireless capacity in order to improve qualityesperience;
and 2) cross-network elements: each layer or dieggged hardware crossed by the data will impaclaiency,
thus a coordination of resource scheduling is neéaleespect the required deterministic latency.

4. Dynamic Deterministic Network (DDN), a candidatefor distributed Edge Computing:

As a solution to truly enable the distributed Ed@mmputing, we proposed DDN [25], a homogeneous-thotted
network fabric for inter (Optical Ethernet) andran{Cloud Burst Optical Slot Switching) edge DCeitonnect. In
DDN, client packets are aggregated into short tistets (few microseconds) that may either be used
opportunistically or reserved (scheduled) to cadmye-sensitive data traffic to guarantee channeksg in time
and/or capacity. Opportunism decreases schedubingplexity while allowing statistical multiplexindgresource
allocation is centrally managed by a real-time oalldr [26]. The controller of each network domaglculates and
distributes a slot reservations schedule to DDNesouh its perimeter. Through the collaboration eél#time
controllers from all domains, slots may be dynamhjceeserved end-to-end to deliver slot-based wirtcircuits.
Time-sensitive flows can, therefore, be physicahlated and carried across the network withowgradtion with
best-effort traffic or between themselves, hen@igng end-to-end deterministic and low latencyaggplication.
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