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Abstract: We demonstrate a cost-effective, highly accurate, and fast-speed cell sensing system 
enabled by the combination of the disordered optical fiber and the deep-learning classifier. It is 
compatible with both coherent and incoherent illumination.  
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1. Introduction 
In medical histology, it is crucial for a pathologist to identify and classify the diseased tissue accurately. The 
conventional histopathological examination requires the preparation of tissue sample slides which involves 
complicated surgical tissue-removal and chemical tissue-fixation procedures [1]. The subsequent diagnosis heavily 
relies on expensive bench-top microscopy and the visual inspection by a trained pathologist. This conventional 
method results in time-consuming, high-cost examinations and surgical trauma to patients. Especially, it is hard to 
achieve real-time in vivo examination of the diseased tissue with high accuracy. One potential solution to improve 
such identification and classification procedures is to combine a fiber-optic system (FOS) with deep learning 
algorithms. It is well known that the FOS could penetrate deep into tissues or hollow organs to collect scattered light 
in a minimally invasive way, which is inaccessible for conventional instruments [2]. By processing fiber-delivered 
optical information with the latest deep-learning algorithms, FOS could work as a cost-effective and high-speed in 
vivo histopathological examination tool with high accuracy and minimized damage to patients. Although many 
different types of optical fibers, including conventional multimode fibers and multicore fibers, can be utilized as the 
optical data transmission media, FOSs based on these conventional optical fibers face severe challenges including 
extreme bending and thermal sensitivity, low mode density, incompatibility with incoherent broadband illumination 
and high cost [2-4]. In contrast to conventional multimode and multicore fibers, recently developed glass-air 
Anderson localizing optical fibers (GALOFs) are becoming a promising alternative since they provide a high density, 
multichannel optical transmission system and GALOF-based FOSs have demonstrated superior performance that 
can overcome the abovementioned limitations [5-8]. The GALOF is a highly multimode system with the majority of 
the localized modes showing single-mode properties, such as bending independence, diffraction-limited beam 
quality, and high spatial coherence. Meanwhile, the mode density can be as high as ~10 modes per µm2 and the 
localization size does not depend on the wavelength. Because of these unique properties, GALOFs provide robust 
and high-quality optical information transfer channels that are also compatible with broadband illumination. Here, 
we present a deep-learning-based GALOF FOS that collects and transmits light from various samples and 
demonstrate fast and accurate classification using either coherent or incoherent illumination.  

2.  Experiment and results 
The schematic of the experimental setup and the architecture of the deep convolutional neural network classification 
model (DCNN-C) are shown in Fig. 1. The GALOF used in this work has an inner diameter of ~278 µm with an air-
hole-filling fraction of 28.5 %. An SEM image of the cross-section structure is also shown in Fig. 1. Two separate 
experiments are performed. In the first experiment, we couple images of the Modified National Institute of 
Standards and Technology (MNIST) database of handwritten numbers into the GALOF input facet under continuous 
wave laser illumination (~405 nm wavelength). MNIST images are transmitted through ~80 cm of GALOF and 
recorded by the CCD camera (Manta G-145B). The MNIST images are 8-bit gray-scale intensity images generated 
by a spatial light modulator located between two linear polarizers. We use 5000 MNIST images as the training data 
and another 1000 images as the test data. The images in the test dataset never appear in the training dataset. The 
collected images are cropped to a pixel size of 512×512. Each image in the training dataset is labelled with the 
corresponding integer ground-truth values ranging from 0 to 9. In the second experiment, we couple the images of 
three different cell samples, which are stained and fixed on glass slides, into the GALOF input facet under 
incoherent broadband LED illumination (center wavelength ~460 nm). The three different cell samples are bird 
blood cells, human red blood cells, and cancerous human stomach cells, respectively. The experimental procedure is 
similar to the first experiment. However, here we use 15000 images as the training dataset and 1500 images as the 
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test dataset. The images of three different cell samples are labeled with the corresponding integer ground-truth 
values ranging from 0 to 2. 

 
 

Fig. 1. Experimental setup and schematic of the DCNN-C architecture. 
 

 
Fig. 2. Confusion matrices of DCNN-C prediction. a) Results for MNIST images. The average probability of an accurate prediction is ~90.0%. b) 
Results for cell images. The average probabilities of accurate predictions are 99.4%, 99.8% and 98.9% for bird blood cells, human red blood cells, 
and cancerous human stomach cells, respectively. (B: bird blood cells, H: human red blood cells, C: cancerous human stomach cells)  
 
The architecture of the DCNN-C is shown in Fig. 1. The cropped raw image is first going through a dropout layer 
and then it is down-sampled by five convolutional neural network blocks to extract high-dimensional image features. 
The flatten layer reshapes the image feature map to a one-dimensional array that is followed by another four dense 
layers all with Relu as the activation function. Finally, the output dense layer with the Softmax activation function 
generates the prediction probability distribution. Depending on the number of ground-truth values, the length of the 
output vector can be either 10 for MNIST images or 3 for cell images. The model is developed based on the Keras 
framework. The Adam optimizer is applied in the training process with a batch size of 64 and 100 epochs in total. 
The regularizer applied in the DCNN-C is defined by the L2 norm. The filter sizes are 11×11 and 3×3 for MNIST 
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images and cell images, respectively. The test time for classifying an individual raw input image is about 30 
milliseconds. The training time is about 0.5 hours and 1.5 hours for MNIST images and cell images, respectively. 
We use a GeForce 2080 Ti GPU to perform the training and the test processes. The test classification results for 
MNIST images and cell images are given in Fig. 2 a) and b), respectively. Different gray values in the confusion 
matrices stand for different probabilities of accurate classification. The average probability for accurately predicting 
an MNIST handwritten number is about 90%. The average probability for accurately classifying the cell type is even 
higher, with 99.4%. 99.8% and 98.9% for bird blood cell, human red blood cell, and cancerous human stomach cell, 
respectively. These test results demonstrate, that the GALOF/DCNN-C system is able to provide very fast and 
accurate classification of various sample objects under both coherent and incoherent illumination. 
 

3.  Conclusion 
In conclusion, a deep-learning and GALOF-based classification system that features simple configuration, fast speed, 
and high accuracy is demonstrated for the first time for both coherent and incoherent illumination. GALOF-based 
fiber-optic imaging and classification systems have great potential to perform in vivo and real-time histopathological 
examinations for clinical applications. 
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