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Abstract: We demonstrate the experimental implementation of photonic neural network for fiber 
nonlinearity compensation over a 10,080 km trans-pacific transmission link. Q-factor improvement 
of 0.51 dB is achieved with only 0.06 dB lower than numerical simulations.  

 
1. Introduction 

The potential benefits of artificial neural networks (ANNs) have recently been demonstrated for optical fiber 
communication, such as fiber nonlinearity compensation (NLC) in long-haul transmission systems [1]. Benefiting 
from the training and execution procedures of ANNs, ANN-NLC algorithms can create effective fiber transmission 
models from the received symbols without needing prior knowledge of transmission link parameters. Compared with 
the deterministic NLC approaches, such as digital back propagation [2,3] and single step perturbation method [4], 
ANN-NLC provides comparable system performance with lower computational complexity. However, despite the 
reduced complexity with ANN-NLC, the hardware implementation of real-time ANN-NLC for high-speed optical 
transmission systems is still a challenge with conventional electronics (e.g. ASIC), considering the required 
computation speed and associated power consumption. 

Applications such as ANN-NLC for optical communications demand for low-power and high-speed neural 
network implementation, and therefore necessitates the investigation of new hardware beyond purely electronic 
physics. Photonic neural networks (PNNs) combine the high speed of photonic devices with highly parallel optical 
interconnects that have originally been developed for telecommunications [5,6]. This makes PNNs naturally suitable 
for processing high-speed optical communication signals. Our prior research on PNN has revealed the analogy 
between the neural networks and wavelength division multiplexing (WDM) photonic hardware and demonstrated 
underlying on-chip devices that allow practical implementation on silicon photonic platforms [7,8]. The advances of 
silicon photonics enable integrations of optical devices and interconnects with sufficient density to perform 
computing tasks driven by real-world applications [9]. 

In this paper, we report the experimental results of employing PNN for fiber nonlinearity compensation for a 
10,080 km trans-Pacific optical transmission system. We demonstrate that the PNN effectively compensates the 
nonlinear transmission impairment and achieves Q-factor improvement of 0.51 dB. Significantly, the experimentally 
obtained Q-factor improvement is only 0.06 dB lower compared to numerical simulations of ANN-NLC algorithm 
with the same neural network architecture. The superior precision of PNN demonstrates the feasibility of using PNN 
for optical fiber transmission applications. 

2. ANN-NLC and photonic neural network implementation 
The ANN model shown in Fig. 1 (a) is optimized for transmission nonlinearity compensation [1]. The fully-
connected feedforward neural network consists of an input layer with triplets accounting for intra-channel nonlinear 
distortion, two hidden layers with two and eight neurons, respectively, and two output neurons corresponding to the 
real and imaginary parts of the nonlinear distortion. The estimated nonlinearity is subtracted from the received 
symbols of interest before being sent to FEC decoding. 

In this experiment, we demonstrate the concept of implementing ANN-NLC using PNN on a silicon photonic 
chip. We implement the functionality of the second hidden layer which consists of eight neurons and each neuron is 
connected to the two outputs from the first layer with off-line trained weight configurations. Fig. 1 (b) shows the 
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micrograph of one photonic neuron connected to a microring (MRR) weight bank. The MRR weight bank provides 
the key functionality to configure connection strengths in the analog WDM network. The weight (ranging from -1 
to 1) on each MRR is determined by how much power of a given WDM channel is split between 2 ports of a balanced 
photodetector (BPD), as shown in Fig. 1 (b). The detected signal drives an MRR modulator, of which the nonlinear 
transmission function serves as the activation function of a neuron. The on-chip inductor and capacitor provide 
network matching circuit for efficient optical-electrical-optical (OEO) conversion.  

The experimental setup is illustrated in Fig. 1(c). As shown in Fig. 1 (a), the second hidden layer takes the two 
neurons’ outputs from the first hidden layer. Hence, we generate two optical signals each encoded with a neuron 
output to emulate the first hidden layer outputs. The data waveforms of the first layer outputs are obtained from 
neural network simulations and are modulated on two WDM lasers by the Mach-Zehnder modulators driven by an 
arbitrary waveform generator (AWG). The modulated signals are combined and then are coupled into the PNN chip 
through grating couplers shown in Fig. 1 (d) [6]. Inside the PNN, the two signals are first weighted by the MRR 
weight bank and then detected by the BPD. The neuron CW laser pump is coupled into the PNN chip and is 
modulated by the photocurrent generated from the weighted signals. The modulator’s p-n junction is forward biased 
to achieve a high modulation efficiency [10]. The neuron’s output is coupled off-chip, detected, and sampled by a 
real-time oscilloscope. 

 

 
Fig. 1: (a) Schematic of ANN-NLC structure; (b) Micrograph of a photonic neuron and MRR weight bank; (c) Experimental setup;  
(d) Image of the PNN chip under test and experimental setup for optical coupling and wire bonding. 

3. Demonstration of Photonic Neural Network for Fiber Nonlinearity Compensation 
To demonstrate the PNN for fiber nonlinearity compensation, the NLC model needs to be trained based on the 
activation function of the photonic neurons. We first characterize the activation function by sending a training data 
pattern to the photonic neuron modulator and comparing it with the corresponding neuron output. The input and 
output signals (as depicted in Fig. 2 (a)) are captured using the real-time oscilloscope. Fig. 2 (b) shows the normalized 
activation function at a neuron pump frequency of 194.776 THz. The full-scale activation function is reconstructed 
from each snapshot generated at different neuron pump frequencies and fit to a Lorentzian function.  

 

 

Next, we apply the Lorentzian activation function to the NLC model (Fig. 1 (a)), and train the neural network 
with received symbols of a single channel 32 Gbaud PM-16QAM signal over a 10,080 km pure silica core fiber 
(PSCF) transmission link, with 60 km span length and EDFA-only amplification, obtained by VPItransmissionMaker 
simulations. As the training proceeded, the Q-factor of the cross-validation (CV) data at the input power of 2 dBm 
is steadily increased and then converged as shown in Fig. 2 (c). Therefore, the NLC model is successfully converged 

    
Fig. 2: (a) Waveforms of a training pattern and the corresponding neuron output captured by a real-time oscilloscope; (b) A snapshot of the 
activation function of a photonic neuron modulator at fneuron = 194.776 THz with Lorentzian fitting (dotted line) (c) ANN-NLC training 
convergence with a Lorentzian activation function (inset: density plot of the input layer weights of the ANN-NLC model with 821 triplets); 
(d) Transmission performance for an execution frame of a 32 Gbaud PM-16QAM signal over a 10,080 km PSCF transmission link. 

(c) (d) (a) (b) 
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with the Lorentzian activation function. Fig. 2 (d) illustrates the Q-factor improvement obtained from the trained 
NLC applied to an execution frame of 32,106 symbols under the same transmission condition. We observe 0.57 dB 
Q-factor improvement at the optimal input power of -1 dBm.  

Based on the weights and biases of the trained NLC model, we configure each MRR weight and neuron bias such 
that the PNN functions as the NLC model. Fig. 3 (a) shows snapshots that compare each neuron output from the 
ANN-NLC simulation and that from PNN within 1-µsec interval. The mean square error (MSE) for each neuron is 
calculated over the execution frame. The evaluated MSE, ranging from 2.59 % to 4.40 %, indicates that the PNN 
provides high accuracy. Fig. 3 (b) illustrates the error distributions of the neuron1 (the worst MSE) and the neuron 
2 (the best MSE), both of which approximately correspond to a Gaussian distribution. Furthermore, we evaluate the 
Q-factor of the transmission signals reconstructed from the eight photonic neuron outputs. Fig. 3 (c) shows the 
constellation of the execution frame by the ANN-NLC numerical simulation, corresponding to 0.57 dB Q-factor 
improvement, whereas the constellation of the same execution frame measured from the PNN output is plotted in 
Fig. 3 (d), achieving 0.51 dB Q-factor improvement. The Q-factor improvement of PNN-NLC is only degraded by 
0.06 dB compared to the numerical simulation of ANN-NLC, which further confirms the superior precision of PNN. 

 

 

  
Fig. 3: (a) Comparison of each neuron output between ANN-NLC and PNN-NLC (blue triangle: ANN-NLC, orange dot: PNN-NLC, green 
dotted line: PNN neuron waveform); (b) error distributions of neuron 1 and 2; Constellations of X-polarization of a 32 Gbaud PM-16QAM, 
with the ANN-NLC gain of 0.57 dB in Q-factor (c) and with the PNN-NLC gain of 0.51 dB in Q-factor (d). 

4. Conclusion 
We have demonstrated the experimental implementation of PNN to compensate the fiber nonlinearity over a 10,080 
km trans-Pacific transmission link of 32 Gbaud PM-16QAM signals. By utilizing PNN, we have achieved Q-factor 
improvement of 0.51 dB, which is only 0.06 dB lower than implementing the ANN with numerical simulation. The 
superior precision of PNN implies the feasibility of implementation of ANN-enabled signal processing for optical 
fiber communications on PNNs. Although the photonic neuron bandwidth of our current chip is limited, caused by 
the low extinction ratio of its MRR modulator, it can be realistically increased to accommodate the high-speed 
communication signals in future iterations [11]. Given such bandwidths, PNN will allow real-time ANN-enabled 
signal processing for high-speed communication signals with a single pipeline. 
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