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1. Introduction

Space division multiplexing (SDM) technologies provide promising solutions to further increasing fiber capac-
ity in optical networks. SDM in optical networks can be implemented with multi-mode fibers (MMFs) [1] or
multi-core fibers (MCFs) [2]. MCFs use commercial-available low-loss fan-in/fan-out devices to separate mul-
tiple spacial channels in SDM links, rather than the cumbersome spatial mode multiplexers and demultiplxers
that are required in MMF-based SDM systems. MCF-based SDM networks also provide better compatibility with
current wavelength division multiplexing (WDM) systems. MCF-based SDM technologies bring massive network
bandwidth per fiber into optical networks but raise challenges for designs of Reconfigurable Optical Add/Drop
Multiplexers (ROADMs) and the corresponding routing, and wavelength/core assignment (RCWA) algorithm.

The latest research in SDM/WDM ROADMs follows the current ROADM design and scaled up for SDM
networks with extra-large port-count wavelength selective-switches (WSSs), which are hard to fabricate and also
introduce huge insertion loss [3]. In addition, massive bandwidth resource in SDM networks requires spatially and
spectrally flexible switching not only with a fine wavelength granularity but also a coarse granularity up to a fiber-
core level. Previously, we explored a hardware-programmable WDM/SDM ROADM node focusing on flexible
function synthesizing [4]. However, a practical ROADM network is still unavailable.

This paper proposes a hardware-efficient SDM/WDM ROADM network with pre-defined fiber-core bypassing
and routing, core and wavelength assignment (RCWA) algorithm. The proposed SDM/WDM ROADMs consist of
low port-count wavelength selective-switches (WSSs). The pre-assigned core-to-core connections greatly reduces
the required number of WSS connections and the port-count of each WSS. Detailed simulations are carried out
with different network topologies, assuming 7-core MCFs. The proposed RWCA algorithm with fiber-core by-
passing reduces spectrum fragmentation and shows similar network performance to a ROADM network without
fiber-core bypassing. Part of this work is present in a MSc thesis [5].

2. Design of Hardware-Efficient SDM/WDM ROADM with Fiber-core Bypassing
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channels from different cores of an input fiber; and the final-layer WSSs multiplex channels from different input
fibers to a specific core. Each vacant input core has one first-layer WSS and two second-layer WSSs while each
vacant core of a out-fiber has two third-layer WSSs and one final-layer WSS. In this design, the first and final
layer WSSs require a port counts based on degrees of the ROADM. The second and third WSSs require a port
count related to the number of cores that require wavelength switching. With core-to-core direct connections and
the proposed ROADM architecture, the implementation of this ROADM only requires low port-count WSSs. In
Section 4, we analysed the required number of WSSes and showed how this design reduce the required WSSs.

3. Hardware-efficient RCWA algorithm enabling traffic grooming

Based on the proposed SDM/WDM ROADM network architecture, a hardware-efficient RCWA algorithm (shown
in Algorithm 1) is developed to reduce the average path length and wavelength fragmentation in a bypass network.
When a traffic request arrives, all available paths will be arranged according to their status. Paths with shorter
length, higher bypass status, and more continuous wavelength resources will have higher priority. The traffic
request will be blocked, when no available path can be assigned. Once a path is selected, the wavelength for this
traffic request is calculated according to the Pack algorithm [6].

Algorithm 1 Hardware-efficient RCWA Algorithm

1: procedure ROUTING AND WAVELENGTH ASSIGNMENT  19: Sl.“V‘”"“b’e =1

2 T; € traffic request list 20: for Pi] € P do

3 B;: band\ividth request of T; o1 if le > B; then

4: Plj. patf.l list 'Of T; ' 2. pavailable | _ p/

5: P/ € P;: No.j path selection of T; vailable ;

6 Path; € P, is final path selection of T; 23 Si += Si )

7 Ll! : path length of Pl.f ; 24: Sort‘lseh(l]uence of P,"‘V‘”Z“b.] ¢ according to S;’"“’l“ble :
8 Bypass! : Bypass status of P/ 25: i;‘;j;v‘;ﬂ:bfgllows aslfendmg rule : (True,False,False)
9 bypass exists, Bypass! =1, else, 'Bypass{ =0; is ! iTi fails == [ then
10: R} :maximum continuous Ain P/; 28 it
11: resource?"”’l”ble : 29: go to start.
12: a ]ist of continu_ous'wavelength slots in Path;. 30: else: Path of T, :Path; Plgvailable[m
13: §] +(L{,Bypass],R])., path status of P/ 31: Wavelength Selection:
14: 32: for k € resaurce;”’“ﬂ"b le do
15: Start: 33: if k > B; then
16: T; shows up and requires B; 34: T; succeeds and occupies k in Path;
17: Path Selection: 35: i+ 4
18: ppvalable = ] 36: go to start.

4. Simulation setup and results

To evaluate the proposed SDM/WDM ROADM and the RCWA algorithm, we implement the SDM/WDM
ROADM networks for the 4-node, 6-node, and 14-node topologies, as shown in Fig.2-4. The bypass core as-
signments are indicated partially in the figures. 160 WDM channels per core were considered. For comparison,
we also implement a full-flexibility ROADM network without fiber core bypassing, called no_bypass core. The
no-bypass network deploys ROADMs without any bypass-core connections.

RG>

Fig. 2. 4-node topology Fig. 3. 6-node topology Fig. 4. 14-node topology

In the 4-node topology, a baseline RCWA algorithm (DR scheme[7]) is used to identify the improvement of
the hardware-efficient RCWA algorithm. Results of this baseline and hardware-efficient RCWA algorithm in both
bypass and no-bypass networks are shown in Figure 5(a). The hardware-efficient RCWA algorithm reduces traffic
blocking probability by 6% in a bypass network and 8% in a no-bypass network as compared with the base-
line RCWA algorithm. The bandwidth blocking probability of the hardware-efficient algorithm in bypass and
no-bypass networks are 22.5% lower than with the baseline RCWA algorithm. However, there is a blocking prob-
ability difference between bypass and no-bypass networks in the 4-node topology. This difference comes from
the longer average path length caused by bypass connections. When a network has more indirectly connected
node pairs, bypass connections have less of an impact on the average path length and blocking probability. The
hardware-efficient algorithm was also tested in 6-node and 14-node topologies and these results are shown in
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Figure 5(b) and Figure 5(c). In both these topologies, the blocking probability difference between bypass and no-
bypass networks disappeared. The introduced bypass-cores don’t affect the network blocking probabilities. The
node architecture and the designed RCWA algorithm achieved efficiently traffic grooming and avoided wavelength
spectrum fragmentation.
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Fig. 5. Traffic (upper) and bandwidth (lower) blocking probabilities in bypass and no-bypass net-

works
Bypass connections are used to reduce the number of active WSSs as well as reduce the path calculation time

because bypass connections limit the potential path selection for traffic requests.As shown in Table 1, the Ratio
of Bypass core indicates the number of bypass cores among all cores; the Ratio of deployed WSSs is the ratio
of deployed WSSs in bypass and no_bypass network; and the Time ratio indicates calculation time difference
between bypass network and no-bypass network, which equals to calculation time in bypass network divided by
time in no-bypass network.

Table 1. Number of saved WSSs and calculation time ratio in different topologies

Ratio of Bypass core | Ratio of deployed WSSs | Calculation Time Ratio
Topology
Cor ebypass/ Corepral N UMpypass / N UMpo bypass tbypass/ tno,bypass
4-node 32/70 384/504 0.33
6-node 56/112 624/840 0.05
14-node 170/294 1604/2408 0.00125

5. Conclusion

We proposed a novel hardware-efficient SDM/WDM ROADM network. A RCWA algorithm was developed for
this proposed ROADM network. The design used only low port-count WSSs and can be deployed in MCF-based
networks with a large number of cores. By placing fiber bypass cores, the required number of key hardware WSSs
is greatly reduced. The simulation indicated fiber bypassing cores reduce spectrum fragmentation. The design also
reduces the complexity of computing the RCWA for different traffic requests.
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