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Abstract: A novel approach based on an artificial neural network (ANN) for lifetime prediction of 

1.55 µm InGaAsP MQW-DFB laser diodes is presented. It outperforms the conventional lifetime 

projection using accelerated aging tests. © 2020 The Author(s) 
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1. Introduction  

Distributed Feedback (DFB) lasers are one of the main light sources of long-haul and high-bite rate optical fiber 

transmission systems requiring high performance and reliability. Hence, there have been several research undertakings 

to improve the characteristics of such lasers [1].  

Laser reliability is strongly dependent on the device characteristics such as current versus optical power behavior and 

its temperature dependence as well as the physical device degradation [1]. Traditionally, laser reliability is 

characterized by monitoring either the increase in operating current 𝐼𝑜𝑝or the decrease in optical power 𝑃𝑜𝑝 .The laser 

lifetime is defined as the time at which the degradation parameters 𝐼𝑜𝑝 or 𝑃𝑜𝑝 reach their maximum acceptable 

threshold. Depending on the operating conditions, accelerated aging tests are performed, according to Telcordia GR-

468 CORE requirements, for the reliability evaluation, allowing the reduction of the test time and long-term reliability 

prediction. These tests must be conducted on many devices aged during several thousands of hours at higher than 

normal temperature and operating currents. Note that the typical required laser mean-time-to-failure (MTTF) in optical 

communication system is > 105 hours [2]. Nonetheless, the aging tests [1] are costly, time consuming and imprecise 

due to the equipment measurement and control instability. Furthermore, the conventional method based on a single 

degradation parameter  𝐼𝑜𝑝 or 𝑃𝑜𝑝 could overestimate the actual laser lifetime. Multiple empirical degradation models 

based on several laser parameters are proposed in [2]. Recently, new approaches based on machine learning (ML) 

techniques achieving higher reliability and confidence levels have been proposed to improve the laser reliability via a 

generic neural network model. In this regard, we investigated a data-driven fault detection model based on Long Short-

Term Memory (LSTM) to detect the different laser failure modes [3]. 

In this paper, we present an ANN-based model for predicting with higher accuracy the MTTF of a 1.55 µm InGaAsP 

MQW-DFB laser under different operating conditions. The proposed model takes the different laser characteristics as 

the inputs and MTTF as the output. Synthetic data is used for training and validation of the model. The overall 

performance evaluation of the model indicates a mean square error of 0.2 years. Our analysis shows that ANN 

outperforms the conventional laser lifetime prediction method both in terms of accuracy and the application to unseen 

operating conditions. 

 

2. Case Study  

This paper develops a lifetime model using ANN able to predict the MTTF of a laser during its operation given 

different monitored laser parameters. By modelling the dependency between the laser lifetime and the impact of the 

different laser characteristics on its reliability, the proposed model can accurately predict the MTTF even under unseen 

operating conditions. Thus, saving the time and the costs required to carry out the accelerated aging tests for the laser 

quantification under different conditions. Note that typically such an ML model would be trained using experimentally 

derived MTTF values, however due to lack of an extensive dataset, we considered an analytical approach for synthetic 

generation of the MTTF values. The results presented thus show the feasibility of our approach in terms of MTTF 

prediction using ANN for lasers with vastly different operating conditions. 

2.1. Data Generation 

In order to train the ML model, synthetic data was generated for low power (𝑃𝑜𝑝 ≤ 10 𝑚𝑊) InGaAsP MQW-DFB 

lasers operating at a 𝜆 range from 1.53 to 1.57 µm in the case temperature 𝑇𝑐  range of -40 ℃ to 85 ℃ with side mode 

suppression ratio SMSR of more than 35 dB. A real laser datasheet [4] is used to model the different laser electro-
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optical characteristics namely current threshold 𝐼𝑡ℎ, slope efficiency SE, voltage V and 𝜆. The performance curves of 

the modeled parameters are shown in Fig. 1. 

Figure 1 a). 𝐼𝑡ℎversus 𝑇𝑐                          b) SE versus 𝑇𝑐                           c) V versus 𝑇𝑐 , 𝑃𝑜𝑝                          d) 𝜆 versus 𝑇𝑐 
For given values of 𝑇𝑐 and 𝑃𝑜𝑝, randomly selected from uniform distributions, the different laser parameters namely 

𝐼𝑡ℎ , SE,V, 𝜆 , 𝜂[5] and junction temperature 𝑇𝑗 [5] are calculated. The 𝑀𝑇𝑇𝐹2  of the obtained parameters is estimated 

using a model for two stress terms temperature and the forward current [5] expressed as 
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Where 𝐸𝑎 is the activation energy for the device in units of eV, 𝑘𝐵 is Boltzmann’s constant, 𝑇𝑗,1 and 𝑇𝑗,2 are different 

junction temperatures in units of Kelvin, 𝐼1𝑎𝑛𝑑  𝐼2  are the corresponding operating currents at 𝑇𝑗,1 and 𝑇𝑗,2 

respectively. In our model, we assumed the aforementioned parameters to be fixed, and used the experimentally 

identified 𝑀𝑇𝑇𝐹1, denoted by MTTF, (7 ×   105 hours), based on accelerated aging test under stressed conditions 

(𝑃𝑜𝑝 = 10 𝑚𝑊, 𝑇𝑐 = 50 ℃) . 

The process of the data generation is shown in Fig. 2. 

     
 
       Figure 2. Dataset Generation Process                                                         Figure 3. Cumulative failure versus failure times   

2.2. Artificial Neural Network Model 

Fed with normalized values of the inputs 𝑃𝑜𝑝 , 𝐼𝑡ℎ, 𝜂, SE, V, 𝜆 and 𝑇𝑗, the ANN model was trained using the back-

propagation algorithm. A mean square error cross-entropy function was used as the loss function to update the weights 

of the model based on the error between the predicted and the desired output. Furthermore, the hyperparameter tuning 

of the model led to the selection of the Adam optimizer and the number of hidden layers of 2.  

The accuracy of the model prediction was quantified by using two regression evaluation metrics, i.e mean square error 

(mse) and the value of scoring function s [6] which can be expressed as function of ℎ𝑖, denoting the difference between 

the ith predicted value and ith true value as 
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The scoring function measures the error of estimation by penalizing overestimated values more than the 

underestimated values as the overestimated values lead to device failure resulting in higher costs.   

2.3.  Conventional Lifetime Prediction Method  

Accelerated aging tests for twenty-five 1.55 µm lasers (also DFB laser as assumed in the model) conducted for 5000 

hours under constant output optical power of 10 mW at 70 ℃  were carried out. The cumulative percent failures versus 

the failure times of the devices estimated by linear extrapolation of change of 𝐼𝑜𝑝 up to 50% are plotted on a lognormal 
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probability scale depicted in figure 3 which yielded 1.8 × 105 hours for median lifetime 𝑡𝑚, defined as the point of 

the fitted line where 50% of devices failed the test, and 0.4 for the standard deviation 𝜎 calculated as ln (𝑡𝑚/ 𝑡1), 

where 𝑡1 is the time corresponding to a cumulative failure of 16% [7]. Consequently, the 𝑀𝑇𝑇𝐹1 is calculated as [7] 

                                                                                        𝑀𝑇𝑇𝐹1 = 𝑡𝑚exp( 
𝜎2

2
 ).      (3) 

Given a 𝑀𝑇𝑇𝐹1 of 1.9 ×  10 5  hours , the 𝑀𝑇𝑇𝐹2  of the same device at a  different junction temperature 𝑇𝑗,2 can be 

estimated using the Arrhenius model[7].          

3. Results and Discussions  

To evaluate the accuracy and the generalization capabilities of the developed model, the ANN model was tested to 

predict the MTTF on an unseen test dataset. The summary of the ANN model performance is shown in figure 4. The 

ANN model achieved smaller MSE of 0.2 years and smaller score function of 17. The scoring function plot, illustrating 

the individual scoring function of each test dataset point as function of ℎ𝑖denoting the prediction error, as depicted in 

figure 4, shows that the ANN model could overestimate the MTTF up to 1.2 years and could underestimate it up to 

1.3 years. The ANN model was compared in terms of MSE and scoring function with two standard regression ML 

algorithms namely Random Forest (RF) and Gradient Boosting Machine (GBM) trained with the same dataset used 

to feed the ANN model. The results demonstrated that ANN significantly outperformed the other ML algorithms by 

achieving smallest MSE as well as smallest score function value  

                                         
     Figure 4. ANN performance evaluation summary.        Figure 5. Comparison of ANN model with conventional method  

In order to compare the performance of the ANN model with the conventional laser lifetime prediction method, a test 

dataset, containing different laser characteristics estimated under similar operating conditions like the accelerated 

aging tests (same optical power 𝑃𝑜𝑝 = 10 𝑚𝑊, different temperatures), was generated and used. The results of the 

comparison, as shown in figure 5, highlight that the ANN model outperformed the conventional approach in terms of 

prediction error. The ANN model was able to predict correctly the MTTF with prediction error less than 1.12 years. 

Whereas the traditional method predicted the MTTF with error in the range of 3.8 to 17 years.  

4. Conclusions  

This paper proposes a ML approach based on ANN for laser MTTF prediction. Synthetic data including different 

electro-optical laser characteristics is used to evaluate the prediction accuracy of the proposed model. The results show 

that ANN outperforms the other ML algorithms namely RF and GBM in terms of MSE and scoring function as well 

as the conventional method based on accelerated aging tests.   

Future work will focus on the accuracy improvement of the proposed model by including other laser characteristics 

influencing its reliability such as SMSR, Relative Intensity Noise, and resistance during the training of the model. 
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