
Th2A.28.pdf OFC 2020 © OSA 2020

Adaptive DNN Model Partition and Deployment in Edge

Computing-enabled Metro Optical Interconnection Network
Mingzhe Liu, Yajie Li, Yongli Zhao, Hui Yang, Jie Zhang*

 Beijing University of Posts and Telecommunications, Beijing 100876, China

*lgr24@bupt.edu.cn

Abstract: A DNN model partition and deployment algorithm is proposed between edge nodes and

cloud in metro optical network. Simulation results show that the algorithm can deploy more DNN

tasks with the same network resource.

1. Introduction

Artificial Intelligence (AI) serves as a promising technology to address complex issues in optical transmission and

networks [1], such as OSNR monitoring, traffic prediction, and failure location. In the existing schemes, AI algorithms

are deployed in the logically centralized control layer, which is usually located in cloud nodes. However, massive

training data sets need to be transmitted from/to the remote cloud node, which incurs high traffic and computational

load, and high latency. The emergence of edge computing enables AI to be deployed closer to the nodes generating

the data (edge nodes) as well as in the centralized controller (cloud). Therefore, some AI tasks (e.g., data pretreatment

and model pre-training) can be realized locally to prevent overhead and guarantee the Quality of Service (QoS). With

edge computing, a Deep Neural Network (DNN) model with multiple layers can have parts of the layers offloaded to

edge nodes and then transfer intermediate data to the centralized cloud node. This model partition method can not

only reduce the data size and transmission delays but also ease the computational load of cloud [2].

A typical deep learning model usually has many layers in the learning network, and the intermediate data size can

be quickly scaled down by each network layer. Different partition schemes of DNN model between edge nodes and

cloud correspond to different usage of network resources. Usually, the more layers deployed in edge nodes, the lower

the bandwidth required for transmission due to data size reduction. However, more Computing Units (CUs) are

required to enable data processing in edge nodes. In contrast, the fewer layers running in edge nodes need the fewer

CUs, with the cost of higher transport bandwidth. In dynamic network scenario, the arrival and depart of services will

change the usage of network resources. A fixed DNN model partition scheme cannot guarantee the deployment of

DNN tasks due to limited network resources. Therefore, it is necessary to investigate the flexible model partition based

on network resources in dynamic network scenarios.

Some related research has been conducted on flexible model partition between edge nodes and cloud. The authors

in [2] introduced deep learning for IoT into the edge computing environment and proposed model partition algorithms

to maximize the number of tasks, which optimized network performance and protected user privacy in uploading data.

In the study of [3], the DNN model was partitioned between the mobile device and the edge node. The authors

proposed a regression-based method to return an optimal partition point which made the model inference meet latency

and energy requirements. Nevertheless, these studies are based on fixed bandwidth and quasi-static scenario, while

flexible model partition based on network resource is still unsolved in dynamic network scenario.

In this paper, we propose an adaptive model partition scheme to meet the requirements of latency and network

resources of DNN tasks in dynamic network scenario. The algorithm can adaptively select model partition points

according to network status by jointly considering CUs in edge nodes and bandwidth resources in optical transport

networks. Simulation results show that the strategy can effectively deploy 6.4% more DNN tasks with the same

network resource in different traffic loads.

2. Network scenario and problem description

A DNN task has specific bandwidth, CUs, and latency requirements, and the edge computing-enable Elastic Optical

Network (EON) is the promising candidate to meet these demands in metro optical interconnection networks. Fig. 1

shows the architecture of DNN model partition between edge nodes and cloud in EON. DNN model is divided into

two parts. Lower layers which cost less calculation is running in edge nodes. The intermediate data size can be quickly

scaled down by each DNN layer [2]. Then the intermediate data is transferred by optical fiber and processed by

remaining layers in cloud. As is shown in Fig. 1(a), there is a four-layer DNN and three model partition schemes.

Partition scheme 1 determines to run only one layer in the edge node, and it costs a few CUs and four Frequency Slots

(FSs). In partition 3, more CUs are required for operations, and more FSs are saved. In comparison, partition 2 costs

suitable CUs for calculation and three FSs for transferring intermediate data. In the real-time network scene, different

model partition schemes will cause a different impact on network and QoS.

Th2A.28.pdf OFC 2020 © OSA 2020

Transport

Network

(a) (b)

Massive data

of optical

networks
Output data

Partition 1

Parttion 2
Partition 3

Cloud

Required resource for partition schemes

Partition 1

Partition 3

Partition 2

Available CU

Unavailable CU

Available FS

Unavailable FS

Assigned CU

Assigned FS
Edge node DNN layers

A

B

C

Fig. 1 (a) Different model partition schemes (b) DNN tasks implemented by different model partition schemes in EON

Fig.1(b) shows three DNN tasks with model partitions in the edge computing-enabled EON. For edge node A, the

DNN task is blocked if using partition 1, due to the lack of FS resources. Similarly, for edge node B, the DNN task

cannot be deployed with partition 3 for lack of CU resources. By contrast, the DNN task is successfully implemented

in edge node C with partition 2. Therefore, in dynamic network scenario, bandwidth resources in optical links and

CUs in edge nodes should be considered jointly. In order to guarantee the FSs, CUs, and latency requirements of DNN

tasks, DNN models need to be divided flexibly.

3. Adaptive Model Partition and Deployment Algorithm

In this section, we employ an adaptive model partition and deployment (AMPD) algorithm to solve the DNN model

flexible partition problem in dynamic network scenarios. In algorithm 1, we traverse all layers of the DNN and perform

resource pre-allocation, then jointly consider CU and FS resources to select the optimal partition point.

Algorithm 1: AMPD algorithm Notations
m : DNN model for a DNN task

e : Edge computing node

d : Original data size of DNN task (GB)

maxL : Latency tolerance (in ms)

LC : Latency of calculating

LT : Latency of optical transmission

L : Total latency of a DNN task

kc : Required edge CU by the k th layer (units/s)

ec : Available CU in edge node (units/s)

kr : Ratio of the intermediate data to the input data

kb : FS cost by the k th layer (slots)

ko : CU overhead of a unit of input data after k layers (units/GB)

iS : Candidate scheduling scheme set

availableb : Average free FSs of a path

Input: topology G and DNN task
max,{ , , , }i i i it m e d L

Output: model partition point k , CU and FS assignment

1. for each layer k in DNN m do

2. if
ie kc c then

3. pre-calculate
iLC and K shortest paths Set

KSPP from edge

node to cloud;

4. for each path p in
KSPP do

5. calculate
iLT and

iL ;

6. if
max,i iL L then

7. add p to Set
candidateP ;

8. end if

9. end for

10. select the path
k

ip according to FS maximum;

11. add k ,
kc ,

k

ip to Set
iS ;

12. else break;

13. end for

14. if
iS is empty then

15.
max,{ , , , }i i i it m e d L is blocked

16. else select the best scheduling scheme s in
iS according to the

principle of
i minimum

17. end

Formulas
i

k i
i i

k

o d
LC

c

= (1)

i

k i
i i p

k i

r d
LT

b B l

=

 (2)

i i i
L LT LC= + (3) k

CU

e

c

c
 = (4)

k
FS

available

b

b
 = (5)

i CU FS = + (6)

The AMPD algorithm consists of two main parts, i.e., pre-scheduling for each layer and best partition selection.

Step1: a DNN task it occurs at the edge node ie . For each DNN layer, we first calculate iLC according to Eq. (1). For

simplicity, we assume that occupied CUs are proportional to the number of layers as kc k = , where is a constant.

Total latency is composed of two parts—computing latency and transmission latency. Then we traverse K shortest

paths from edge to cloud and obtain
iLT by Eq. (2), where p

i
l is the modulation level adaptively according to the distance

of p , B is the capacity of a FS. Hereafter, we get the pre-scheduling scheme of the kth layer according to FS maximum

from all the paths which iL can satisfy the latency max,iL . Step2: In order to accommodate as many tasks as possible,

CU metrics CU and FS metrics FS are jointly considered by Eqs. (4) and (5). Finally, we balance FS and CU as

balanced metrics i by Eq. (6), then select the best scheme according to the minimum i .

Th2A.28.pdf OFC 2020 © OSA 2020

1

2

3

738

4

11

13

6

5

10
8

21

30
22

23
24

20 19

25

18
17

27
16

12

15

14

32

33

34
36 37

28

29
359

31 26

Cloud Edge node

1 2 3 4 5

0

20

40

60

80

100

R
e
d

u
ce

d
 d

a
ta

 s
iz

e
 r

a
tio

[%
]

Number of layers

 DNN1

 DNN2

 DNN3

0

1

2

3

4

5

6

7

R
e
q

u
ir

e
d

 C
U

 f
o
r

o
p

e
ra

tio
n
(u

n
its

/G
B

)

Fig. 2 Network topology Fig. 3 Reduced data and complexity of DNN

4. Simulation and Results Analysis

Fig. 2 shows a metro network topology used as the simulation topology [5]. We assume that the EON can support

distance adaptive modulation levels. The modulation level of BPSK, QPSK and 8QAM, with the longest transmission

distance 240km, 120km and 60km is, respectively, 1, 2 and 3. Parameter and B are set as 20 (units/s) and

6.25(GB/slot). For simplicity, three five-layer DNN are considered and the occupied FSs for transferring intermediate

data generated by each layer are 5, 4, 3, 2, and 1, respectively. Referring to [2], the DNN models have different data

ratio reduction and complexity for each layer, as shown in Fig. 3. Table 1 summarizes other simulation parameters.

Note that the latency tolerance of a task is related to the data size. To verify the performance of the proposed AMPD,

we also implement three DNN model partition strategies as reference algorithms, which are CU-based, FS-based, and

fixed partition (baseline, DNN1, DNN2, and DNN3 are divided at 3th, 2rd and 1st layer, respectively).

Fig. 4(a) shows the DNN task blocking probability of four algorithms in different traffic loads. Note that the

traffic load is characterized by the task arrivals per unit of time in the Poisson distribution traffic model. We can see

that with traffic load from 400 to 650 Erlangs, blocking probability of all algorithms increases and, AMPD achieves

the lowest blocking probability among the four algorithms. As the traffic load increases, the difference between AMPD

and baseline blocking probability increases gradually. When the traffic load is up to 650 Erlangs, AMPD can deploy

6.4% more DNN tasks than the baseline. This is because AMPD can divide DNN models adaptively and better cope

with changes in traffic intensity. In Fig. 4(b), we fix the traffic load at 500 Erlangs and set the CUs from 800 to 1200

units. Except by the CU-based algorithm, blocking probability of the other three algorithms decrease in degrees,

especially FS-based. This is because the CU-based algorithm prefers to choose the scheme that occupies less CUs and

more FSs, resulting in blocking due to lack of FS resources instead of CUs. In Fig. 4(c) and (d), we contrast the CU

and bandwidth utilization of AMPD against the other three algorithms in different traffic loads. We observe that with

the increase of traffic load, more CUs and more FSs are needed to meet the requirements of DNN tasks. Because of

balanced metrics, AMPD can balance CU and FS resources compared to CU-based and FS-based algorithms.

(650,7.7%)

(650,14.1%)

400 450 500 550 600 650
0

2

4

6

8

10

12

14

B
lo

c
k
in

g
 p

ro
b
a

b
ili

ty
[%

]

(a) Traffic load (Erlangs)

 AMPD

 CU-based

 FS-based

 Baseline

800 900 1000 1100 1200

2

3

4

5

6

7

8

9

10

(800,2.7%)

B
lo

c
k
in

g
 p

ro
b
a
b
ili

ty
[%

]

(b) CUs in edge nodes (units/s)

 AMPD

 CU-based

 FS-based

 Baseline

(800,9.5%)

450 500 550 600 650

30

40

50

60

70

B
a
n
d
w

id
th

 u
ti
li
z
a
ti
o
n
[%

]

(c) Traffic load (Erlangs)

 AMPD CU-based

 FS-based Baseline

450 500 550 600 650

20

30

40

50

60

70

C
U

 u
ti
li
z
a
ti
o
n
[%

]

(d) Traffic load (Erlangs)

 AMPD CU-based

 FS-based Baseline

Fig.4 Blocking probability and resource utilization for various traffic load and CUs

5. Conclusion

This paper proposes a heuristic algorithm that adaptively selects the appropriate DNN model partition between edge

nodes and cloud nodes based on network resources in dynamic optical network scenarios. Simulation results show the

proposed algorithm could reduce the DNN task blocking probability and deploy 6.4% more DNN tasks than baseline.

Acknowledgements This work was supported in part by National Natural Science Foundation of China (NSFC)

Project (Grant No. 61901053, 61822105) and China Postdoctoral Science Foundation (2019M650588).

References
[1] Y Zhao, et al., “Coordination between control layer AI and on-board AI in optical transport networks”, IEEE/OSA Journal of Optical

Communications and Networking, 12 (1), pp. A49-A57 (2020)
[2] H Li, et al., “Learning IoT in edge: Deep learning for the Internet of Things with edge computing.” IEEE Network 32 (1), pp. 96-101 (2018)

[3] Y Kang, et al., “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ”ACM SIGARCH Computer Architecture News.

45 (1), pp.615-629 (2017)
[4] Z Liu, et al., “Joint Jobs Scheduling and Routing for Metro-Scaled Micro Datacenters over Elastic Optical Networks”, Proc. ECOC 2019

[5] M Fiorani, et al., “Flexible architecture & control strategy for metro-scale networking of geographically distributed DCs”, Proc. ECOC 2016

Table1 Simulation parameters

FSs per fiber link

CUs in edge nodes

Latency tolerance

Data size per task

Distance per link

K, paths of KSP

Task number

Simulation times

Cloud/Edge nodes

80 slots

1000 units

[50,200] ms

[1,5] GB

20km

8

50000

20

1/6

