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Abstract: Extreme value theory provides a framework to assess rare but extreme events such as 
network outages or cycle slips. We present the theory of extreme value statistics and its application 
to optical fiber communication systems. © 2020 The Author 

1. Overview
Optical fiber communication systems are often characterized by rare events whose extreme nature can have a
devastating impact. Examples of these extreme events include cycle slips in the carrier recovery of a digital coherent
receiver to a network outage caused by insufficient signal to noise being available at the receiver. In a well-designed
system, the probability of these extreme events is reduced to an acceptably low value, requiring statistical techniques
to estimate these rare events. Extreme value statistics provides a means of estimating these rare events[1]. The field
of extreme value statistics began over ninety years ago with the pioneering work of Fréchet[2], Fisher and
Tippett[3], Gumbel[4] and Weibull[5], and has been applied to numerous problems within the communications
community, ranging from bit error rate estimation[6-15] to network traffic analysis[16-21]. While historically the
primary use of extreme value statistics in optical fiber communication systems was the Weibull distribution for the
analysis of the mechanical strength of optical fibers[22-25], system level issues are now being considered[26-32].

2. Mathematical preliminaries for extreme value statistics
2.1 Introduction to extreme value statistics
Extreme value statistics are concerned with the distribution of the maxima (or minima) of a set of samples. For
example, if the worst-case daily bit error rate (BER) is recorded, what would be the distribution of these worst-case
measurements over a period of a month? If having measured over a month, can it be estimated what the worst-case
BER that might be expected to be measured over a year? Alternatively, if a hard decision FEC is employed – what is
the probability that the BER might exceed the FEC threshold over a decade of operation?

In parallel with machine learning (ML), the approach of extreme value statistics is data driven, however in contrast 
to ML the data sets are often very small due to the rarity of extremes observed. To analyze these small data sets, 
order statistics are often used, e.g. if the worst-case BER is recorded over 𝑁 days then an empirical distribution 
function is formed with 𝑥#, 𝑥%, …𝑥' being the measurements ordered such that 𝑥# ≤ 𝑥% … ≤ 𝑥' and the 
corresponding probability is estimated as 𝑝* = 𝑖/(1 + 𝑁). As we shall see in the subsequent, in general the 
distribution for the maxima (or minima) converge to a single generalized extreme value distribution, being akin to 
the central limit theorem for the average of independently and identically distributed (i.i.d.) random variables. 

2.2 Fisher-Tippett Theorem 
If we consider a set of 𝑛 i.i.d. random variables X#, X%, … . X5 and define 𝑀7 = max	{𝑋#, 𝑋%, 𝑋>, … . 𝑋7}, it follows 
that if 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) then 𝑃(𝑀7 ≤ 𝑥) = [𝐹(𝑥)]7. Fisher and Tippett considered convergence to a limiting form 
𝐺(𝑥) for large 𝑛 such that for some parameters 𝑎7 and 𝑏7 we can write  [𝐹(𝑥)]7 = 𝐺(𝑎7𝑥 + 𝑏7). Fisher and Tippett 
noted since we could write 𝑛 = 𝑛#𝑛% it followed [𝐺(𝑥)]7 would also tend to the same limiting form thereby 
satisfying the functional relationship 

[𝐺(𝑥)]7 = 𝐺(𝑎7𝑥 + 𝑏7) (1) 
with solution for 1 + 𝜉𝑥 > 0 given by 

𝐺(𝑥) = expL−[1 + 𝜉𝑥]N#/O	P (2) 

Which satisfies (3) with 𝑎7 = 𝑛NO	and 𝑏7 = (𝑛NO − 1)/𝜉 and hence we deduce the Generalized Extreme Value 
(GEV) distribution for the maxima from 𝑛 samples is given by 

𝑃(𝑀7 ≤ 𝑥) = expQ− R1 + 𝜉 S
𝑥 − 𝜇7
𝜎7
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N#O
X (4)
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With three regimes existing according to whether 𝜉 = 0, 𝜉 < 0 or 𝜉 > 0. 
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2.3 Limiting distribution for the minima of a set of identically distributed variables 
If we define the minima 𝑚7 = min	{𝑋#, 𝑋%, 𝑋>, … . 𝑋7} then a similar distribution to that obtained for the maxima 
exists since 

𝑃(𝑚7 ≥ 𝑥) = [𝑃(𝑋 ≥ 𝑥)]7 = [1 − 𝐹(𝑥)]7     (5) 
 
with the solution of [1 − 𝐺(𝑥)]7 = 1 − 𝐺(𝑎7𝑥 + 𝑏7) giving  

 

𝑃(𝑚7 ≤ 𝑥) = 1 − expQ− R1 − 𝜉 S
𝑥 − 𝜇7
𝜎7
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and again three regimes existing according to whether 𝜉 = 0 (Gumbel), 𝜉 < 0 (Fréchet) or 𝜉 > 0 (Weibull). 
 
2.4 Peaks over threshold analysis 
A modern alternative to the classical approach to consider the magnitude 𝑦 of the peaks over some threshold 𝑢, with 
a good example of this being in [15]. If we define 𝑦 = (𝑥 − 𝑢) > 0, the corresponding conditional probability is: 

 
𝑃(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) =

1 − 𝐹(𝑢 + 𝑦)
1 − 𝐹(𝑢)  (7) 

If 𝐹(𝑥) satisfies the Tippett-Fisher theorem then 𝑃(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) is a generalized Pareto distribution since  
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where  𝜎u = 𝜎 + 𝜉(𝑢 − 𝜇) and for the approximation we note if exp(−𝑓(𝑥)) ≈ 1 then |𝑓(𝑥)| ≪ 1 and hence 
exp(−𝑓(𝑥)) ≈ 1 − 𝑓(𝑥). We also note in the limit as 𝜉 → 0 that 𝑃(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) = exp(−𝑦/𝜎) 
 
3. Application to Optical Fiber Communication Systems  
For the case of optical fiber communication systems, extreme value methods lend themselves to problems for which 
no analytical model exists but for which measurement data is available. One such area within optical fiber 
communication systems relates to the temporal evolution of polarization within an optical fiber, with Gumbel 
distribution used to model the maximum of log(BER) due to polarization mode dispersion[26,28] and peaks over 
threshold analysis used for estimate outage due to polarization dependent loss for wavelength interleaved 
transmission[29]. Alternatively, it can be used to improve the simulation time compared to Monte Carlo techniques, 
with [27] indicating extreme value methods required fewer simulation runs than a Multicanonical Monte Carlo 
approach for the same accuracy. Likewise, when considering the network blocking probability, reprocessing of the 
data in [31] reveals excellent agreement between Monte Carlo (with 10,000 simulation runs) and extreme value 
analysis (with 100 simulation runs) for estimating the number of 100 GbE demands for a 1% network blocking 
probability.  



4. Concluding remarks 
As machine learning emerges, we are increasing moving towards data driven optical fiber communication systems, 
where models are based on measurement data rather than fundamental physics. We should however also consider 
alternative statistical data driven approaches such as extreme value methods where the focus is on modeling the tail 
of the distribution. This is of particular importance for an optical fiber communication system where link availability 
of 99.9999% or better might be required. 
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