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Abstract: DSP-based transceivers with enhanced monitoring and mitigation capabilities enable 

highly efficient transport networking with minimized excess margin and open line systems with 

enhanced availability. Examples for such advanced DSP algorithms are introduced. 

1. Introduction

The advent of flexible transceivers that can support various transmission throughputs in different spectral 

efficiencies has stimulated discussions on new approaches for designing and operating optical networks that would 

enable better utilization of fiber infrastructure [1-4]. Such approaches put their basis on monitoring the quality of 

transmission (QoT) of actual network by means of the transceivers in use to configure the optical paths, while 

conventional network design methods are based on off-line calculation assuming the worst-case scenario. The new 

approaches thus aim at extracting higher network capacity by minimizing the system margin to cover piece-to-piece 

and/or temporal variations of optical network elements. Optimum allocation of system margin should be more 

challenging when a network consists of multi-vendor equipment (e.g. open line system or optical disaggregation 

scenarios). In this paper, we discuss the importance of advanced monitoring and mitigation of various optical 

impairments in the above context and introduce some of our research progress on coherent DSP algorithms. 

2. Implication of advanced physical layer monitoring and enhanced impairment tolerances

The core non-trivial issue in the optimal margin allocation is to identify how much is the real "excess" margin that 

can be eliminated while maintaining "essential" margin to maintain required availability and reliability of the 

network. Monitored QoT for each path in actual operation is free from piece-to-piece variation of relevant optical 

devices indeed and thus helps to eliminate some part of the "excess" margin. However, the main difficulty resides in 

potential temporal variation of QoT arising from various mechanisms that are not limited but at least polarization 

changes, reconfiguration of optical wavelength paths (i.e. channel addition, deletion, or switching), optical 

frequency drift of lasers in optical transmitters, polarization mode dispersion, polarization dependent loss (PDL), 

optical power deviation, and nonlinear distortions (Fig. 1). Under the impact of the above-mentioned effects, the 

QoT monitored at a certain point of time during its operation is neither the best, average, nor the worst for the 

wavelength path over its lifetime.  As it is depicted in Fig. 2, temporal variation of QoT can exhibit at least four 

types of changes: (1) changes due to the ageing of components that are typically gradual in the order of months or 

years toward the end-of-life of the system, (2) changes arising from varying ambient temperature or manual 

operation on fibers that are typically in the order of seconds to minutes, (3) changes induced by planned or  
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Fig. 1. Various sources of signal impairments of a wavelength path 
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Fig. 2. Schematic image of temporally varying QoT of an optical path over its lifetime.  

predictable events such as addition, deletion or switching of wavelength paths or manipulation on fiber plants, and 

(4) Unpredictable sudden changes such as the ones induced by lightning, mechanical vibration, cuts or mis-operation

that can accompany with subsequent polarization and/or power transients in the order of less than a second. All the

above need to be considered to guarantee the error-free signal reachability by assuming the worst case under the

presence of the above (1) through (4). In this context, the importance of coherent DSP in the transceiver is evident in

the monitoring and mitigation of impairments. It is because coherent DSP allows full access to the optical field

information and thus has the maximum potential as physical layer monitoring and predicting the QoT of the

wavelength path as well as counteracting it. With more advanced monitoring it should be possible to partially

identify the sources of impairments and thus to eliminate some part of the system margin allocated for (1), (2) and/or

(3) more aggressively.  The system margin associated with (4), on the other hand, can be minimized when the

transceivers have maximum tolerance to such transients. It should be noted that the importance of monitoring and

mitigation should be crucial in operating open and/or disaggregated optical networks where multi-vendor equipment

is contributing to the risk on QoT in an less-organized manner than it will be in a single-vendor situation.

3. DSP algorithms for combatting less-predictable impairments

In order to maintain a certain level of QoT with a sufficient availability ratio even under the impact of unpredictable

impairments (associated with (4) in the above), transceivers should have a good tolerance to them. One of the most

challenging phenomena to deal with is polarization dependent loss (PDL). PDL resides in optical components in

transceivers and in ROADM nodes that are concatenated by the transmission fiber where the coupling of PDL axes

are random and time varying, which can generate unpredictable time varying impairment. There are two strategies to
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Fig. 3. Proposed structure of the training sequence for Müller matrix method of PDL estimation 
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Fig. 4. Experimental verification results for PDL pre-compensation in an transmission through a PDL emulator 

consisting of 7 PDL emulators (each having a PDL of 1 dB) concatenated by random polarization couplings. Results 

with and without PMD (realized by 3.8 ps differential group delay element each inserted after each PDL emulator.)  
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combat with PDL by means of transceiver DSP:  employing a specifically designed dual-polarization coding scheme 

such as space-time code [5, 6], and compensation of PDL based on the monitoring of PDL monitoring at the receiver 

[7]. In the following, an inverse matrix method based on Müller matrix monitor is introduced as an example for the 

latter approach. By sending a training sequence that exhibits pre-determined four distinct sates of polarizations 

(SOPs) (Fig. 3), the end-to-end PDL vector of the link can be estimated by the Müller matrix method. Once 

identified it is possible to cancel-out the PDL within the transmitter DSP. Such approach has been experimentally 

demonstrated for 32 Gbaud DP-QPSK transmission verified successful suppression of PDL-induced impairment 

even under the co-existence of polarization mode dispersion (PMD) as shown in Fig. 4. 

4. Advanced DSP algorithms for visualizing the optical path characteristics

Although conventional monitoring techniques based on coherent DSP are already powerful to some extent, they can 

only estimate end-to-end cumulative quantities over the path. In order to better help the network operator even in 

multi-vendor situation by identifying which kind of physical layer anomalies are generated where, we have proposed 

a receiver DSP algorithm to estimate the longitudinal profile of such physical parameters in a distance-resolved 

manner with the help of Kerr nonlinearity inherent to the optical fiber propagation [7] (Fig. 4). Initial experiment for 

a 506 Gbit/s DP-16QAM signal transmission over a 5-span showed a positive sign by successful visualization of the 

number, locations, and fiber launch powers of in-line amplifiers and the location of an excess lump loss (Fig. 5).  
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Fig. 4. Functional block diagram of receiver DSP for in-situ power profile visualization 
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Fig. 5. Experimental verification of the proposed in-situ power profile monitoring (red and green curves). Locations 

of 4 repeaters (at 60, 100, 160, and 200 km) and lumped loss (at 120km, red curve only) are identified. Fiber 

attenuation coefficient also showed reasonable agreement with separate measurement by OTDR (dotted line). 

4. Summary

Allowing the full access to the optical field data of the optical signal, the coherent transceiver has a good potential 

for monitoring and mitigating physical layer impairments for optical wavelength path. Examples of such research 

efforts have been introduced, showing a good sign of their feasibility in reducing CAPEX and OPEX of the optical 

networks, in particular the open or disaggregated ones, by innovative DSP algorithms. 
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