
Th1G.7.pdf OFC 2020 © OSA 2020

FPGA Implementation of Prefix-Free Code Distribution

Matching for Probabilistic Constellation Shaping

Qinyang Yu1,2, Steve Corteselli2, and Junho Cho2*
1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, 200444 Shanghai, China

2. Nokia Bell Labs, 791 Holmdel Road, Holmdel, NJ 07733, USA
*email: junho.cho@nokia-bell-labs.com

Abstract: We implement rate-adaptable prefix-free code distribution matching in an FPGA,

demonstrating its real-time feasibility with substantially less hardware resources than low-density

parity-check coding. © 2020 The Authors

1. Introduction

Distribution matching (DM) and forward error correction (FEC) are two essential components of a probabilistically

shaped (PS) coded modulation system [1] with the probabilistic amplitude shaping (PAS) architecture [2]. There exist

DM and FEC implementations that jointly approach the capacity of the additive white Gaussian noise channel to

within a practically inconsiderable gap, such as the constant composition DM (CCDM) [3] and the irregular low-

density parity check (LDPC) code [4]. However, the feasibility of real-time hardware for DM and FEC should be

shown under stringent real-world constraints such as the latency, throughput, and the resource area, in order to declare

a pragmatically achieved information rate (IR) in high-speed optical fiber communications. As for the FEC, this is widely

agreed among transmission experiments, hence only pragmatic codes are used to claim an achieved IR, that are proven

through extensive hardware implementations to be real-time feasible (see. e.g., [5]). As for the DM, on the other hand,

virtually no existing experimental results justify the real-time feasibility of the used DM; indeed, to the best of our

knowledge, there is only one very recent paper on hardware-based DM implementation [6] published to date.

In this paper, we show that the rate-adaptable (RA) prefix-free code DM (PCDM) [7, 8] is a real-time feasible DM for

high-speed optical transmission, by implementing it in a field-programmable gate array (FPGA). We demonstrate that

PCDM can be processed in a massively parallel manner in each block, thereby minimizing the latency and maximizing

the throughput, whereas most other known DMs such as CCDM [3], shell mapping [9], and enumerative sphere

shaping [10] have limited parallelism [11, Table 3]. We also show that PCDM consumes substantially smaller area

than LDPC to achieve a target throughput on a selected FPGA platform.

2. Rate-Adaptable PCDM

PCDM is a look-up table (LUT)-based DM that uses variable-length prefix-free codes with a framing method, enabling

data transmission in accordance with the optical transport network’s frame structure. With a reference to the example

LUT shown in Fig. 1(a), a PCDM encoder observes an incoming bit

stream on the fly until it finds the first matching left entry from the

LUT, and produces the corresponding symbols in the right entry; e.g.,

a bit stream “01100…” is mapped by the codebook of Fig. 1(a) to the

symbol stream “111111, 1113, …” The encoder repeats this process

until all the input bits in a length-𝐵 block are encoded. The problem

of variable-length output is solved by a framing method that switches

the codebook to that of a uniform quadrature amplitude modulation

(QAM) at a proper time during encoding, see [7, 8] for details. The

encoder then always produces a length-𝑆 output symbol block from

the length-𝐵 input bit block, accomplishing a fixed DM rate (also

called the shaping factor) of 𝛽 = 𝐵/𝑆 bit/symbol in each block. We

implement 15 PCDM codebooks for 15 different shaping factors, as

shown in Table 1. Here, we fix the output length 𝑆 and change the

input length 𝐵 for an optical transponder to flexibly change the IR at
Fig. 1. (a) A PCDM codebook for 𝛽 = 0.5, and (b) its

parallel codeword detector.

Input

Bits

Output

Symbols

0
100
1010
1011
1100
1101
1110
111100
111101
1111100
1111101
1111110
11111110
111111110
111111111

111111
113
111113
11113
1113
1311
3111
133
3113
1313
3131
3311
3133
3313
3331

0 1 1 0 0 0 1 0 0 1

0

1 1 0 0

X

1 0 0

0

0

0

1 0 0

0

0

(a) (b)

CD1 :

CD2 :

CD3 :

CD4 :

CD5 :

CD6 :

CD7 :

CD8 :

CD9 :

CD10 :

Table 1. Fifteen PCDM codebooks implemented in our FPGA

QAM template 16-QAM 64-QAM

Input block length (𝐵) 90 120 150 180 210 240 270 360 390 420 450 480 510 540 570

Output block length (𝑆) 300

Shaping factor (𝛽 = 𝐵/𝑆) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

IR 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Th1G.7.pdf OFC 2020 © OSA 2020

a fixed symbol rate. When used with fixed rate-0.8 FEC, and with 16-

or 64-ary QAM templates in the PAS architecture, the codebooks

realize PS QAM with the IRs ranging from 1.6 to 4.8 bit/symbol in

0.2-bit/symbol increments (cf. Table 1), where 1.6 and 4.8 bit/symbol

are realized using uniform QAMs. At 125 GBaud, for example, these

IRs span net data rates from 400 Gb/s to 1.2 Tb/s in 50-Gb/s

increments in two polarizations. Each of the 15 LUTs has ≤ 16 rows

that have ≤ 9 bits and ≤ 12 symbols in the left and right entries,

respectively. Figure 2 shows the shaping gap, i.e., the difference in

average symbol energy that the 15 PCDM encoders use compared to

an ideal DM for the same target shaping factor, for 𝑆 = 300, 600, and

without framing. Note that for the same number of symbols 𝑆 in each

output block, the DM in binary domain produces 𝑆 and 2𝑆 bits,

respectively, for 16- and 64-QAMs in the PAS architecture.

3. Universal Hardware Architecture for PCDM

We design a universal hardware architecture for fine-grained RA-

PCDM, as shown in Fig. 3, which consists of a Variable-Length

PCDM Encoder, a Uniform Encoder, a Source Multiplexer (SMUX),

and a Block Connector (BC). In the variable-length PCDM encoder, a

length-𝑊 Sliding Window (SW) fetches 𝑊 bits from an incoming bit

stream. In each window, following the method presented in [12], a set

of 𝑊 parallel Codeword Detectors (CDs) simultaneously searches for

the potential codewords; e.g., Fig. 1(b) illustrates how the bit stream

“0110001001…” is encoded in a length-10 window in parallel, where

only the matching codewords from the 1st, 2nd, 6th, and 7th CDs

(highlighted in colors) are produced while all the other candidate

codewords are discarded. As seen from the example, the last few bits

in the window may be left un-encoded due to the non-existence of a

matching codeword (this induces increased latency, as discussed below), hence the window begins from the last un-

encoded bit in the next step. There are 15 sets of parallel CDs (cf. red numbers in Fig. 3), each set of which is dedicated

to one codebook, collectively realizing the 15 shaping factors presented in Table 1. The subsequent Codeword

Connector (CC) aggregates the valid codewords into a seamless symbol stream. Based on the cumulative input and

output lengths of the CDs, an Overflow Predictor (OP) detects the position from which the uniform encoder should

be used to accomplish fixed-length framing (as per the method described in [7, 8]). The SMUX chooses the output

symbols either from the variable-length PCDM encoder or from the uniform encoder, depending on the switching

signal from the OP. Finally, the BC produces the probabilistically-shaped symbols, framed in a fixed-length block.

Operation of a PCDM decoder, and hence its architecture, is almost identical to the encoder.

Importantly, this universal architecture enables massively parallel processing. Specifically, a parallel factor of 𝑃 =
𝑊 − 𝑈 + 1 is realized, where 𝑈 is the length of the longest word in the left LUT entry, which accounts for the residual

un-encoded bits in each window. In our case, the codebook with the largest shaping factor of 𝛽 = 1.9 represents the

critical case that determines the latency and throughput of a whole RA-PCDM encoder, which has the overhead 𝑈 =
6. Therefore, when implemented in a fully pipelined manner, our PCDM encoder finishes encoding a block every

𝑇 ≔ ⌈𝐵/𝑃⌉ clock cycles, where ⌈𝑥⌉ denotes the least integer ≥ 𝑥. The latency for processing a block is then 𝐿 ≔ 𝑇/𝐹

μs with 𝐹 being the clock frequency in MHz. The net data rate is 𝐹𝐵/𝑇 Mb/s, and the throughput of the encoder,

which is defined by convention as the number of output bits per unit time, amounts to 𝐹(2𝑆)/𝑇 Mb/s.

4. FPGA Implementation Results

We use the Kintex Ultrascale XCKU040 FPGA [13] as a target platform, which has 242,400 configurable logic block

(CLB) LUTs, 484,800 CLB registers, and 600 block random access memories (BRAMs) of 36 Kb each. When a

PCDM encoder is synthesized for various window sizes, ranging from 16 to 64, a great portion of the utilized resources

is the CLB LUTs and the rest is only the CLB registers (which are more abundant in the FPGA), as shown for an

example window size of 24 in Table 2; we therefore use the throughput per CLB LUT to evaluate the area efficiency

of a PCDM encoder. Figure 4 summarizes the synthesis results for various window sizes, in terms of the area, clock

frequency, latency, throughput, and the area efficiency. We use 12 and 13 pipeline stages for 𝑊 ≤ 32 and 𝑊 = 64,

respectively. It can be observed that the latency and throughput can be continuously enhanced by increasing the

Fig. 3. Universal architecture for RA-PCDM.

Parallel

Codeword

Detector

Codeword

Connector

Sliding Window

Overflow

Predicted?

Output symbols

Source MUX

Variable-Length

PCDM Encoder

Uniform

Encoder

Y

N

Block Connector

Input bits

Parallel

Codeword

Detector

Parallel

Codeword

Detector 1

15

Fig. 2. Shaping gap of the PCDM codebooks.

Shaping factor

S
h

a
p

in
g

 g
a

p
 (

d
B

) 300

600

Without framing

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Th1G.7.pdf OFC 2020 © OSA 2020

window size, at the expense of a decreasing area efficiency. This allows

the PCDM encoder (and the decoder in the same way) to achieve

stringent real-time processing requirements for high-speed optical

transmission. For the case of 𝑊 = 24, seven instances of a pair of

PCDM encoder and decoder can be synthesized on a target FPGA

platform, achieving a throughput of 16.7 Gb/s.

Unfortunately, it is not possible to fairly compare our PCDM

implementation with other DM implementations, since it is very

difficult from the only existing hardware-based DM implementation

[6] to infer the implemented rate adaptability and shaping gap.

Therefore, we compare our results with a recent RA-LDPC

implementation on the same FPGA platform [14], in which FEC alone

performs rate adaptation to realize 8 different IRs with 16- and 64-

QAMs. Although the RA-LDPC encoder and decoder use a significant

amount of CLB registers and BRAMs, we give the RA-LDPC the

advantage of evaluating the area efficiency based solely on the CLB

LUT. Depicted in Fig. 5 are the throughputs per CLB LUT for the fixed

rate-0.8 LDPC [14], RA-LDPC [14], RA-PCDM (𝑊=24), and RA-PCDM-LDPC (𝑊=24), the last implementation of

which combines the fixed rate-0.8 LDPC and RA-PCDM to realize a PS coded modulation system as a whole. Here,

the throughput is calculated with respect to the entire PS QAM encoder output bits since, in the PAS architecture,

FEC needs to yield 1.5× more bits than DM in the critical case of 𝛽 = 1.9; also, the numbers of CLB LUTs for the

encoder and decoder are scaled such that the encoding and decoding throughputs are the same (these lead to the

difference in the area efficiencies of RA-PCDM between Figs. 4 and 5; namely, 140 kb/s/CLB LUT ÷ 2 (en-,

decoders) ×1.5≈104.9 kb/s/CLB LUT). It can be seen from Fig. 5 that, compared to the fixed-rate LDPC (1st column),

only marginal area should be invested to realize the fine-grained rate adaptability using the RA-PCDM-LDPC (4th

column), which comes with the additional benefit of shaping gains. Compared to the RA-LDPC (2nd column), the

RA-PCDM-LDPC realizes ~2× finer granularity of the IR using less hardware resources, again with the additional

benefit of shaping gains.

5. Conclusion

We implemented parallel RA-PCDM in FPGA, demonstrating that RA-PCDM can be implemented in real time with

substantially less hardware resources than RA-LDPC. The parallel factor can be flexibly increased to fulfill the latency

and throughput requirements of high-speed optical transmission, and the block length can also be increased to reduce

the shaping gap (cf. Fig. 2) with a slightly increased hardware cost.

References
[1] J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightw. Technol. 37(6), 1590–1607 (2019).

[2] G. Böcherer et al., “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[3] P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), pp. 430–434 (2016).

[4] T. J. Richardson et al., “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory 47(2), pp. 619–637 (2001).

[5] P. Hailes et al., “A survey of FPGA-based LDPC decoders,” IEEE Commun. Surveys Tutorials 18(2), 1098–1122 (2015).
[6] T. Yoshida et al., “FPGA implementation of distribution matching and dematching,” in Proc. ECOC, Dublin, Ireland, Sep., 2019, Paper M.2.D.2.

[7] J. Cho, “Prefix-free code distribution matching for probabilistic constellation shaping,” IEEE Trans. Commun., to be published.
[8] J. Cho and P. J. Winzer, “Multi-rate prefix-free code distribution matching,” in Proc. OFC, San Diego, CA, USA, Mar. 2019, Paper M4B.7.

[9] P. Schulte and F. Steiner, “Divergence-optimal fixed-to-fixed length distribution matching with shell mapping,” IEEE Wireless Commun.

Lett. 8(2), pp. 620–623 (2019).
[10] Y. C. Gültekin et al., “Approximate enumerative sphere shaping,” in Proc. ISIT, Vail, CO, USA, Jun. 2018, pp. 676–680.

[11] Y. C. Gültekin et al., “Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping,” 2019, arXiv:1909.08886[eess.SP].

[12] J. Nikara et al., “Multiple-symbol parallel decoding for variable length codes,” IEEE Trans. VLSI Syst. 12(7), 676–685 (2004).
[13] Xilinx, “UltraScale architecture and product data sheet: overview,” DS890 (v3.10), Aug. 2019.

[14] X. Sun et al., “Run-time reconfigurable adaptive LDPC coding for optical channels,” Optics express 26(22), pp.29319–29329 (2018).

Fig. 4. RA-PCDM synthesized in FPGA with various window sizes.

14k
17k

21k

35k

0k

10k

20k

30k

40k

16 24 32 64

A
re

a
 (

C
L
B

 L
U

T
s
)

W

A
re

a
 (
C

L
B

 L
U

T
s
) 40k

30k

20k

10k

0k
16 24 32 64

𝑊

146
119

93

61

0

50

100

150

16 24 32 64

C
lo

c
k
 F

re
q
.
(M

H
z
)

W
16 24 32 64

𝑊

C
lo

c
k
 F

re
q

. (
M

H
z
)

150

100

50

0

1.68

2.39 2.55

3.67

0

1

2

3

4

16 24 32 64

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

W
16 24 32 64

𝑊

4

3

2

1

0

T
h
ro

u
g

h
p

u
t
(G

b
/s

)

124
140

120
105

0

50

100

150

16 24 32 64

E
ff
.

(k
b
/s

/C
L
B

L
U

T
)

W
16 24 32 64

𝑊

150

100

50

0T
h
ro

u
g

h
p

u
t
/
A

re
a

(k
b

/s
/C

L
B

 L
U

T
)0.36

0.25 0.24

0.16

0.0

0.1

0.2

0.3

0.4

16 24 32 64

L
a
te

n
c
y

(u
s
)

W
16 24 32 64

𝑊

0.4

0.3

0.2

0.1

0

L
a
te

n
c
y
 (
μ

s
)

Table 2. Resource utilization for 𝑊 = 24

Resource SW
CD+CC

+OP
SMUX BC Total

CLB LUT 4376 5708 5732 1272 17090

CLB Register 66 372 2408 1200 5246

BRAM 0 0 0 0 0

Fig. 5. PS-QAM Throughput/Area of FPGA

implementations.

0

5

10

15

20

1 2 3 4
RA-PCDM

-LDPC
RA-

PCDM
LDPC

RA-
LDPC

T
h
ro

u
g

h
p

u
t
/
A

re
a

(k
b

/s
/C

L
B

 L
U

T
)

0

5

10

105

7.8

104.9

8.4

5.6

