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Abstract: We implement rate-adaptable prefix-free code distribution matching in an FPGA, 

demonstrating its real-time feasibility with substantially less hardware resources than low-density 

parity-check coding. © 2020 The Authors 
 

1. Introduction 

Distribution matching (DM) and forward error correction (FEC) are two essential components of a probabilistically 

shaped (PS) coded modulation system [1] with the probabilistic amplitude shaping (PAS) architecture [2]. There exist 

DM and FEC implementations that jointly approach the capacity of the additive white Gaussian noise channel to 

within a practically inconsiderable gap, such as the constant composition DM (CCDM) [3] and the irregular low-

density parity check (LDPC) code [4]. However, the feasibility of real-time hardware for DM and FEC should be 

shown under stringent real-world constraints such as the latency, throughput, and the resource area, in order to declare 

a pragmatically achieved information rate (IR) in high-speed optical fiber communications. As for the FEC, this is widely 

agreed among transmission experiments, hence only pragmatic codes are used to claim an achieved IR, that are proven 

through extensive hardware implementations to be real-time feasible (see. e.g., [5]). As for the DM, on the other hand, 

virtually no existing experimental results justify the real-time feasibility of the used DM; indeed, to the best of our 

knowledge, there is only one very recent paper on hardware-based DM implementation [6] published to date. 

In this paper, we show that the rate-adaptable (RA) prefix-free code DM (PCDM) [7, 8] is a real-time feasible DM for 

high-speed optical transmission, by implementing it in a field-programmable gate array (FPGA). We demonstrate that 

PCDM can be processed in a massively parallel manner in each block, thereby minimizing the latency and maximizing 

the throughput, whereas most other known DMs such as CCDM [3], shell mapping [9], and enumerative sphere 

shaping [10] have limited parallelism [11, Table 3]. We also show that PCDM consumes substantially smaller area 

than LDPC to achieve a target throughput on a selected FPGA platform. 

2.  Rate-Adaptable PCDM 

PCDM is a look-up table (LUT)-based DM that uses variable-length prefix-free codes with a framing method, enabling 

data transmission in accordance with the optical transport network’s frame structure. With a reference to the example 

LUT shown in Fig. 1(a), a PCDM encoder observes an incoming bit 

stream on the fly until it finds the first matching left entry from the 

LUT, and produces the corresponding symbols in the right entry; e.g., 

a bit stream “01100…” is mapped by the codebook of Fig. 1(a) to the 

symbol stream “111111, 1113, …” The encoder repeats this process 

until all the input bits in a length-𝐵 block are encoded. The problem 

of variable-length output is solved by a framing method that switches 

the codebook to that of a uniform quadrature amplitude modulation 

(QAM) at a proper time during encoding, see [7, 8] for details. The 

encoder then always produces a length-𝑆 output symbol block from 

the length-𝐵 input bit block, accomplishing a fixed DM rate (also 

called the shaping factor) of 𝛽 = 𝐵/𝑆 bit/symbol in each block. We 

implement 15 PCDM codebooks for 15 different shaping factors, as 

shown in Table 1. Here, we fix the output length 𝑆 and change the 

input length 𝐵 for an optical transponder to flexibly change the IR at 
Fig. 1. (a) A PCDM codebook for 𝛽 = 0.5, and (b) its 

parallel codeword detector. 
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Table 1. Fifteen PCDM codebooks implemented in our FPGA 

 

QAM template 16-QAM 64-QAM

Input block length (𝐵) 90 120 150 180 210 240 270 360 390 420 450 480 510 540 570

Output block length (𝑆) 300

Shaping factor (𝛽 =  𝐵/𝑆) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

IR 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
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a fixed symbol rate. When used with fixed rate-0.8 FEC, and with 16- 

or 64-ary QAM templates in the PAS architecture, the codebooks 

realize PS QAM with the IRs ranging from 1.6 to 4.8 bit/symbol in 

0.2-bit/symbol increments (cf. Table 1), where 1.6 and 4.8 bit/symbol 

are realized using uniform QAMs. At 125 GBaud, for example, these 

IRs span net data rates from 400 Gb/s to 1.2 Tb/s in 50-Gb/s 

increments in two polarizations. Each of the 15 LUTs has ≤ 16 rows 

that have ≤  9 bits and ≤  12 symbols in the left and right entries, 

respectively. Figure 2 shows the shaping gap, i.e., the difference in 

average symbol energy that the 15 PCDM encoders use compared to 

an ideal DM for the same target shaping factor, for 𝑆 = 300, 600, and 

without framing. Note that for the same number of symbols 𝑆 in each 

output block, the DM in binary domain produces 𝑆  and 2𝑆  bits, 

respectively, for 16- and 64-QAMs in the PAS architecture.  

3. Universal Hardware Architecture for PCDM

We design a universal hardware architecture for fine-grained RA-

PCDM, as shown in Fig. 3, which consists of a Variable-Length 

PCDM Encoder, a Uniform Encoder, a Source Multiplexer (SMUX), 

and a Block Connector (BC). In the variable-length PCDM encoder, a 

length-𝑊 Sliding Window (SW) fetches 𝑊 bits from an incoming bit 

stream. In each window, following the method presented in [12], a set 

of 𝑊 parallel Codeword Detectors (CDs) simultaneously searches for 

the potential codewords; e.g., Fig. 1(b) illustrates how the bit stream 

“0110001001…” is encoded in a length-10 window in parallel, where 

only the matching codewords from the 1st, 2nd, 6th, and 7th CDs 

(highlighted in colors) are produced while all the other candidate 

codewords are discarded. As seen from the example, the last few bits 

in the window may be left un-encoded due to the non-existence of a 

matching codeword (this induces increased latency, as discussed below), hence the window begins from the last un-

encoded bit in the next step. There are 15 sets of parallel CDs (cf. red numbers in Fig. 3), each set of which is dedicated 

to one codebook, collectively realizing the 15 shaping factors presented in Table 1. The subsequent Codeword 

Connector (CC) aggregates the valid codewords into a seamless symbol stream. Based on the cumulative input and 

output lengths of the CDs, an Overflow Predictor (OP) detects the position from which the uniform encoder should 

be used to accomplish fixed-length framing (as per the method described in [7, 8]). The SMUX chooses the output 

symbols either from the variable-length PCDM encoder or from the uniform encoder, depending on the switching 

signal from the OP. Finally, the BC produces the probabilistically-shaped symbols, framed in a fixed-length block. 

Operation of a PCDM decoder, and hence its architecture, is almost identical to the encoder.  

Importantly, this universal architecture enables massively parallel processing. Specifically, a parallel factor of 𝑃 =
𝑊 − 𝑈 + 1 is realized, where 𝑈 is the length of the longest word in the left LUT entry, which accounts for the residual 

un-encoded bits in each window. In our case, the codebook with the largest shaping factor of 𝛽 = 1.9 represents the 

critical case that determines the latency and throughput of a whole RA-PCDM encoder, which has the overhead 𝑈 =
6. Therefore, when implemented in a fully pipelined manner, our PCDM encoder finishes encoding a block every 

𝑇 ≔ ⌈𝐵/𝑃⌉ clock cycles, where ⌈𝑥⌉ denotes the least integer ≥ 𝑥. The latency for processing a block is then 𝐿 ≔ 𝑇/𝐹 

μs with 𝐹 being the clock frequency in MHz. The net data rate is 𝐹𝐵/𝑇 Mb/s, and the throughput of the encoder, 

which is defined by convention as the number of output bits per unit time, amounts to 𝐹(2𝑆)/𝑇 Mb/s. 

4. FPGA Implementation Results  

We use the Kintex Ultrascale XCKU040 FPGA [13] as a target platform, which has 242,400 configurable logic block 

(CLB) LUTs, 484,800 CLB registers, and 600 block random access memories (BRAMs) of 36 Kb each. When a 

PCDM encoder is synthesized for various window sizes, ranging from 16 to 64, a great portion of the utilized resources 

is the CLB LUTs and the rest is only the CLB registers (which are more abundant in the FPGA), as shown for an 

example window size of 24 in Table 2; we therefore use the throughput per CLB LUT to evaluate the area efficiency 

of a PCDM encoder. Figure 4 summarizes the synthesis results for various window sizes, in terms of the area, clock 

frequency, latency, throughput, and the area efficiency. We use 12 and 13 pipeline stages for 𝑊 ≤ 32 and 𝑊 = 64, 

respectively. It can be observed that the latency and throughput can be continuously enhanced by increasing the 

 
Fig. 3. Universal architecture for RA-PCDM. 
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Fig. 2. Shaping gap of the PCDM codebooks. 
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window size, at the expense of a decreasing area efficiency. This allows 

the PCDM encoder (and the decoder in the same way) to achieve 

stringent real-time processing requirements for high-speed optical 

transmission. For the case of 𝑊 = 24, seven instances of a pair of 

PCDM encoder and decoder can be synthesized on a target FPGA 

platform, achieving a throughput of 16.7 Gb/s.  

Unfortunately, it is not possible to fairly compare our PCDM 

implementation with other DM implementations, since it is very 

difficult from the only existing hardware-based DM implementation 

[6] to infer the implemented rate adaptability and shaping gap. 

Therefore, we compare our results with a recent RA-LDPC 

implementation on the same FPGA platform [14], in which FEC alone 

performs rate adaptation to realize 8 different IRs with 16- and 64-

QAMs. Although the RA-LDPC encoder and decoder use a significant 

amount of CLB registers and BRAMs, we give the RA-LDPC the 

advantage of evaluating the area efficiency based solely on the CLB 

LUT. Depicted in Fig. 5 are the throughputs per CLB LUT for the fixed 

rate-0.8 LDPC [14], RA-LDPC [14], RA-PCDM (𝑊=24), and RA-PCDM-LDPC (𝑊=24), the last implementation of 

which combines the fixed rate-0.8 LDPC and RA-PCDM to realize a PS coded modulation system as a whole. Here, 

the throughput is calculated with respect to the entire PS QAM encoder output bits since, in the PAS architecture, 

FEC needs to yield 1.5× more bits than DM in the critical case of 𝛽 = 1.9; also, the numbers of CLB LUTs for the 

encoder and decoder are scaled such that the encoding and decoding throughputs are the same (these lead to the 

difference in the area efficiencies of RA-PCDM between Figs. 4 and 5; namely, 140 kb/s/CLB LUT ÷ 2 (en-, 

decoders) ×1.5≈104.9 kb/s/CLB LUT). It can be seen from Fig. 5 that, compared to the fixed-rate LDPC (1st column), 

only marginal area should be invested to realize the fine-grained rate adaptability using the RA-PCDM-LDPC (4th 

column), which comes with the additional benefit of shaping gains. Compared to the RA-LDPC (2nd column), the 

RA-PCDM-LDPC realizes ~2× finer granularity of the IR using less hardware resources, again with the additional 

benefit of shaping gains. 

5. Conclusion 

We implemented parallel RA-PCDM in FPGA, demonstrating that RA-PCDM can be implemented in real time with 

substantially less hardware resources than RA-LDPC. The parallel factor can be flexibly increased to fulfill the latency 

and throughput requirements of high-speed optical transmission, and the block length can also be increased to reduce 

the shaping gap (cf. Fig. 2) with a slightly increased hardware cost. 
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Fig. 4. RA-PCDM synthesized in FPGA with various window sizes. 
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Table 2.  Resource utilization for 𝑊 = 24 

 

Resource SW
CD+CC

+OP
SMUX BC Total

CLB LUT 4376 5708 5732 1272 17090

CLB Register 66 372 2408 1200 5246

BRAM 0 0 0 0 0

 
Fig. 5. PS-QAM Throughput/Area of FPGA 

implementations. 
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