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Abstract: We propose staircase codes based on non-systematic polar codes, describing a
general framework for encoding and decoding, and presenting simulation results showing the
effectiveness of the proposed approach even with short component codes.

1. Introduction

Staircase codes [1] and product codes [2] are powerful concatenated constructions that are particularly attractive for
optical communications. They can be viewed as spatially-coupled codes with a specific interleaver shape, and where
memory is a single frame, or block, in case of staircase codes and zero blocks for product codes. Their decoding
process can be easily parallelized, and thus allows the use of long codes, resulting in good error-correction performance
and high throughput. Decoder implementations of staircase and product codes have lower power consumption than
inherently more powerful codes, e.g. low-density parity-check codes [3], but the decoding of component codes plays
a major role in the total decoding complexity. Polar codes [4] are hardware-friendly, capacity-achieving linear block
codes that rely on channel polarization; at infinite code length, polarization leads uncoded bits to be either completely
noisy or noise-free. With finite code lengths, polarization is incomplete, and uncoded bits can be sorted in order
of reliability. In a code of rate R = N/K, the K most reliable uncoded bits carry information, while the remaining
N−K are frozen to a known value. Given their low implementation complexity, systematic and non-systematic polar
codes alike have been considered as component codes for product codes in [5–7], and a staircase construction with
systematic polar codes has been presented in [8,9]. Non-systematic polar codes are characterized by a faster encoding
and decoding process. In this work, we propose a method to construct staircase codes with non-systematic polar codes,
detailing the encoding and decoding frameworks.

2. Staircase Code With Non-Systematic Polar Codes

Let us define the frozen set of the polar component code of length N with K information bits as F . The N-bit input
vector u to the polar encoder is composed of a first half unew, where information and frozen bits are placed, and a
second half x′ that is composed of previously encoded bits. N/2 input vectors u compose an input matrix U . Let us
build an input matrix UN

0 , where in every row 0 ≤ i < N/2 each bit position 0 ≤ j ≤ N/2 is an information or a
frozen bit according to F , while all bit positions j ≥ N/2 are set to 0. The leftmost half of UN

0 is called U1, while
the rightmost half is X ′0. We encode each row of UN

0 and obtain the encoded matrix XN
0 : we consider the rightmost

N/2×N/2 matrix as X0, and the leftmost half as X ′1. X0 is transmitted. We compose UN
1 through a set of column input

vectors (U2) and the columns of X ′1. After encoding, we obtain XN
1 , with X1 on the lower side and X ′2 on the upper side.

This is repeated alternating row and column encoding: the encoding process is shown in Fig. 1.
On the receiver side, the decoder relies on a set of logarithmic likelihood ratio (LLR) matrices Λk, 0 ≤ k ≤W ,

representing a decoding window of W + 1 blocks. While it is implemented as a circular buffer, we can consider the
received block being stored in ΛW and the oldest block being that in Λ0. Λ1 is the block output from the decoder,
but to decode it we need the information stored in block Λ0. Let us take ΛW , whose LLRs are relative to the encoded
matrix XW , that we assume being last encoded by rows. ΛW−1 is relative instead to XW−1, encoded by columns. To
decode ΛW−1 by columns, we have to propagate the LLRs in ΛW from representing XW to representing X ′W , that was
last encoded by columns. This is done by applying a kind of “soft” polar code encoding process to each row of ΛW−1.
Polar codes are encoded by multiplying a binary vector with a transformation matrix, an operation commonly repre-
sented by a tanner graph constituted of stages of XORs. To propagate LLRs, we use the same tanner graph structure,
substituting the � operation to the XORs, that can be easily expressed as in [10] a�b = sgn(a)sgn(b)min(a,b). The
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Fig. 1: Encoding process.
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Fig. 2: Decoding process.

LLR propagation is concatenated with an interleaver ΠRtoC. After obtaining thus Λ′W , relative to X ′W , we can prepend it
to ΛW−1, and decode each column. The decoding process returns a matrix of extrinsic values ΓW−1: the updated ΛW−1
is computed as ΛW−1 = ΓW−1 +YW−1, where YW−1 stores the LLRs originally received from the channel after the
transmission of XW−1. ΛW is not updated, as simulation have shown that backpropagating information is damaging,
an effect exacerbated by the LLR propagation. In the next decoding step, ΛW−1 and ΛW−2 have to be considered: the
LLRs in ΓW−1 already refer to X ′W−1 save for an interleaving function ΠCtoR, and thus enable row decoding of Λ′W−1
and ΛW−2. The process is repeated alternating row and column decoding, until Λ′1 is decoded with Λ0: the output of
the decoding iteration is then the estimated Û1. The decoding process is shown in Fig. 2.

2.1. Component Decoding

Each row (column) component code is a length-N polar code with frozen set F . To be able to obtain soft values out
of an inherently soft-in hard-out algorithm, the following is applied. Let us consider the successive-cancellation-list
decoding algorithm (SCL) [11], and in particular its LLR-based formulation in [12], where to each of the L candidate
paths is assigned a path metric PM, updated after each bit estimation ûi as

PMi =

{
PMi−1+|δi|, if ûi 6= HD(αi),
PMi−1 , otherwise,

(1)

where δi is the LLR associated to ûi, PM0 = 0, and HD(αi) = 0 if αi ≥ 0, and 1 otherwise. At the end of the SCL
decoding, we take the L estimated input vectors û0, . . . , ûL−1, having path metrics M0, . . . ,ML−1, and re-encode them
obtaining the estimated codewords x̂0, . . . , x̂L−1. Extrinsic soft information γi associated to codeword bit x̂i is then
calculated as (2), where λi is the ith LLR input to the decoder, and αE and αB are scaling factors ≤ 1. In case the L
codewords have the same value for a given bit x̂i, i.e. {l = 0, . . . ,L−1s.t. x̂l

i = a}= /0, γi is computed as (3), where λ̂

is vector λ sorted in ascending order of magnitude, and kmin and kmax are two indices devised via simulation. The sign
of γi is inferred according to x̂i.

γi = αE

(
αB

(
min
x̂l

i=1
(Ml)−min

x̂l
i=0

(Ml)

)
−λi

)
(2) |γi|= αE

(
αB

(
kmax

∑
j=kmin

|λ̂ | j

)
−λi

)
(3)

3. Simulation results

Figure 3 and 4 plot the bit error rate (BER) and block error rate (BLER) of the proposed construction, simulated over an
additive white Gaussian noise channel. We consider component codes of length N = {128,256}, rate R = {5/6,7/8},
and window size W = {2,5,10}. The frozen set of the component codes considers a length-N polar code reliability
vector and selects the N/2−K least reliable positions among the first N/2. An alternative approach is to directly
consider a reliability vector of length-N/2, leading to similar error-correction performance with short-to-medium polar
codes. Within the decoding process detailed in Section 2, the component codes have been decoded with SCL, L = 8.
To compute the BLER, every N/2×N/2 matrix Û that contains at least a bit in error constitutes an erroneous block.
All codes have been decoded with the αE and αB that minimize the Eb/N0 at BER=10−7, obtained via simulation.
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The performance of all codes improves of more than 3.5dB when increasing the W from 2 to 5; the larger decoding
window allows to correct a higher number of errors, and the waterfall region of the curves starts at lower Eb/N0. How-
ever, within these decoding conditions, increasing W from 5 to 10 does not improve the error correction performance,
due to the very local nature of αE and αB, that need to be varied across the decoding window as W increases. In case
of W = 5,10, for N = 256, the lower rate component code yields a 1dB gain with respect to the higher rate at low
BER/BLER, as the slope in case of R = 5/6 is substantially steeper. On the other hand, the BER and BLER with
N = 128 for the two rates tend to converge, leading to a smaller gain. Comparing constructions with component codes
with the same rate, we can see that increasing the code length when R = 5/6 results in 1dB gain at BER=10−7, while
0.5dB are observed for R = 7/8. Finally, the brown BER curve in Fig. 4 matches that obtained with the same code
parameters in Fig. 4 of [9], but with L = 8 instead of L = 32, thus requiring substantially lower decoding complexity.
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Fig. 3: BER/BLER for N = 128, L = 8.
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Fig. 4: BER/BLER for N = 256, L = 8.

4. Conclusions

In this paper, we proposed a staircase construction based on non-systematic polar codes, together with an encoding
and decoding framework that match existing solutions with a lower decoding complexity. While we define a specific
interleaver as an example, any interleaver with one block of memory can be used straightforwardly.
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