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Approach to Mislead the Automation in SD-IPoEONs
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Abstract: We study the vulnerability of artificial intelligence assisted network automation (AIaNA),
and design a deep reinforcement learning (DRL) model to mislead the AIaNA in software-defined IP
over elastic optical networks (SD-IPoEONs) through crafting/injecting adversarial traffic samples.

1. Introduction
Recently, the rising of software-defined networking (SDN) and artificial intelligence (AI) makes it almost inevitable
to combine these two promising technologies for an unprecedented level of network automation [1]. This is especially
true, when the network to be managed is a multilayer one that carries dynamic and irregular traffic from a huge volume
of network services, whose quality-of-service (QoS) demands are various,e.g., a packet over elastic optical network
(IPoEON) [2]. Therefore, people have designed a few machinelearning (ML) based network control and management
(NC&M) schemes [3, 4] to facilitate AI-assisted network automation (AIaNA) in software-defined IPoEONs (SD-
IPoEONs). Through data analytics, these schemes can forecast the network status in an SD-IPoEON precisely and then
make NC&M decisions accordingly. Hence, network resourcescan be automatically allocated/adjusted in advance to
improve cost-effectiveness significantly. However, aftercelebrating the initial success of AIaNA, we should still be
cautious about implementing it in production networks. This is because it is still unknown whether or not the reduction
of human involvement achieved by AIaNA could bring unexpected reliability and security issues. More specifically,
whether AIaNA can be fully trusted, to what extent it can be trusted, and whether it can completely replace a human
operator, are unexplored questions. This inspires us to study how to mislead a human-free AIaNA system in this work.

We consider an SD-IPoEON that leverages ML-based traffic prediction to achieve AIaNA. Note that, in addition to
traffic volume, AIaNA can also utilize ML to predict other parameters, such as quality-of-transmission (QoT), resource
usage, and exception occurrence [3]. Nevertheless, it is known that such ML-based predictors are vulnerable to well-
crafted adversarial samples [5]. Specifically, a maliciousparty can easily mislead an ML-based predictor to output
incorrect predictions by mixing adversarial samples in itsinput time series. Although such adversarial-sample-based
attacks can be addressed by introducing transfer learning in ML-based predictors [6], we argue that if the attacker
is smart enough to generate the adversarial samples adaptively, the predictors could still be misled to make AIaNA
unreliable. Therefore, we leverage deep reinforcement learning (DRL) to design an adversarial module (ADVM) that
can craft and inject adversarial traffic samples adaptivelyto mislead the ML-based traffic predictor in an SD-IPoEON.

We show that the ADVM can monitor and interact with the SD-IPoEON to train its deep neural networks (DNNs)
on-the-fly, such that adversarial traffic samples can be generated and injected in the most devastating and hard-to-detect
manner. Then, AIaNA in the SD-IPoEON will be misled to make the multilayer service provisioning unreliable,i.e.,
there will be unnecessary congestions/under-utilizations on lightpaths, and abnormal network reconfigurations willbe
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Fig. 1. System architecture, (a) SD-IPoEON with ADVM, (b) Design of DRL-based ADVM, and (c) Operation of ADVM.
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invoked frequently to cause extra operational cost and complexity. Our simulations also study the tradeoff between the
strength of perturbation due to adversarial samples and theimpact of the adversarial-sample-based attack on AIaNA.

2. DRL-based Adversarial Traffic Sample Generation and Injection
Fig. 1(a) shows the architecture of an SD-IPoEON and ADVM’s position in it. The data plane consists of IP and
optical layers. The optical layer is built with a few bandwidth-variable optical cross-connects (BV-OXCs), which
are interconnected by fiber links and can switch lightpaths with flexible-grid spectrum assignments [7]. On each
lightpath, there is dynamic traffic from the IP layer, which is generated by the hosts, and is groomed and routed
on the lightpath by the packet switches. Every packet switchconnects to a local BV-OXC through a few bandwidth-
variable transponders (BV-Ts), each of which can generate/terminate the optical signal of a lightpath. All the data plane
elements are managed by the centralized controller. This means that the controller can install flow-tables in switches
in the IP layer to groom and route IP flows on lightpaths, and italso can configure the BV-Ts and BV-OXCs in the
optical layer to establish, reconfigure and remove lightpaths to adapt to dynamic IP traffic. Meanwhile, the controller
monitors traffic condition, leverages ML-based traffic prediction to detect congestions/under-utilizations on lightpaths
in advance, and adjusts multilayer service provisioning inthe SD-IPoEON accordingly to achieve AIaNA. In this
work, we assume that the ML-based traffic predictor is based on the long/short-term memory based neural network
(LSTM-NN), since it is one of the most-used ML schemes for forecasting time series. Based on traffic prediction and
current network status, the controller calculates future multilayer provisioning schemes with the CRV algorithm in [4].

On the other hand, as shown in Fig. 1(a), ADVM also resides in the control plane to monitor traffic condition for
generating and injecting adversarial traffic samples adaptively. It can launch adversarial-sample-based attacks in either
the in-band or out-of-band manner. For the in-band manner, ADVM taps and hacks the communications between
the control and data planes, to collect legitimated traffic and inject adversarial samples. For the out-of-band way,
it deploys a few traffic monitors in the SD-IPoEON for passivemonitoring, and controls several hijacked hosts to
inject adversarial traffic samples when necessary. We wouldnot specify how the attacks are conducted here, since
our ADVM can mislead the AIaNA in the SD-IPoEON in both manners. The detailed design of ADVM is shown in
Fig. 1(b). It collects historical traffic samples regardingone or more lightpaths, and crafts the adversarial samples to
inject accordingly. This is realized by letting the DRL agent based on the advantage actor critic (A2C) interact with
the emulated environment provided by the local traffic predictor. The local traffic predictor in ADVM mimics the
legitimated one that is attached to the controller. Note that, the two predictors do not have to use the same architecture.

Fig. 1(c) explains the operation of ADVM. The state observedby the DRL agent is a series of the most recent traffic
samples collected from the SD-IPoEON. If we select an instant as the start time of ADVM’s operation, the latest
historical samples (for the traffic before the start time) constitute the initial states0. Using s0 as the input, the local
predictor forecasts the undisturbed future samples asp0, which should describe the legitimated traffic accurately,i.e.,
mimicking the legitimated predictor connected to the controller. Then, the agent determines its actiona0 on how to
inject adversarial samples based ons0, with its actor neural network (A-NN). More specifically, the actiona0 indicates
when and how to disturb the legitimated traffic within a preset future duration. After the action having been applied,
the observed state gets transferred tos1, based on which the local predictor obtains a new predictionp1.

Next, ADVM calculates the reward of the last action (r0) with p0, p1, anda0. Here, the reward increases with the
average relative error betweenp0 and p1 for corresponding samples, and it decreases with the perturbation strength
caused bya0 on s1. That is to say, the agent is trained to find the way that can usethe smallest perturbation strength
to mislead the legitimated predictor to give the largest prediction error. The agent gets trained in the online manner,
which means that the aforementioned procedure will be repeated during network operation until the duration ofp0

has expired and a newp0 is generated to continue. Through the process, the critic neural network (C-NN) in the agent
evaluates the actions from the A-NN, and outputs the action-state value function (i.e., theQ function) for calculating
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Fig. 2. Training performance of ADVM, (a)Q value, (b) TD error, and (c) Distribution of relative errors.
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the temporal difference (TD) error. The TD error is then leveraged by the agent to update the parameters of its A-NN
and C-NN. Meanwhile, it is easy to see that as long as the localtraffic predictor uses transfer learning, ADVM will be
able to craft adversarial samples in situations where the characteristics of traffic are time-varying.

3. Simulation Setup and Results
Our simulations use the 14-node NSFNET [4] as the optical layer topology. In the IP layer, dynamic flow requests are
generated according to the Poisson process, while the legitimated samples of each flow follow realistic traffic traces [8].
In the simulations, ADVM can only modify at most 40% of the original samples, to launch its adversarial-sample-based
attacks, while the actual samples to modify and the change made by each adversarial sample are determined by its DRL
agent. Meanwhile, we assume that compared with its originalone, each adversarial sample can only increase the traffic
volume. This is because decreasing of traffic volume is not feasible in the out-of-band attacks. For a lightpath whose
traffic is described by 160,000 time-varying samples, the performance of ADVM’s online training is shown in Fig. 2.
Figs. 2(a) and 2(b) suggest that the training converges quickly after∼20,000 steps, since the TD error tends to be 0 and
theQ value increases slowly thereafter. Then, if we limit the maximum relative error (RE) made by each adversarial
sample as 20%, Fig. 2(c) plots the distribution of the REs. Weobserve that 90.9% of the adversarial samples have a RE
below 5%, while the average RE is 3.2%. Hence, the changes made by the adversarial samples wouldbe hard-to-detect.

Next, we attach ADVM to each established lightpath in the SD-IPoEON, let it launch adversarial-sample-based
attacks with different perturbation strengths, and check its adverse effects. Here, we define the strength of perturbations
made by adversarial samples as the maximum RE caused by each of them, and change its value from 5% to 20%. Fig. 3
summarizes ADVM’s adverse effects on the AIaNA of the SD-IPoEON, where each data point is obtained by averaging
the results from 10 independent runs, to ensure sufficient statistical accuracy. It can be seen that compared with the one
without ADVM, the operation of the SD-IPoEON with it gets disturbed significantly. Specifically, the major metrics on
congestions on lightpaths, bandwidth allocations, and network reconfigurations are all increased substantially, when
the attacks present. Also, the increments become larger when the strength of perturbations increases. Hence, the results
in Fig. 3 confirm that ADVM causes extra and unnecessary operational cost and complexity.

Fig. 3. Adverse effects of ADVM on (a) Congestions, (b) Bandwidth allocations, and (c) Network reconfigurations.

Finally, we check how ADVM performs when the characteristics of traffic are time-varying. More specifically, we
make the legitimated traffic samples switch between two setsof traffic data, whose characteristics are different, and set
the strength of perturbations as 10%. For such setting, ADVMstill causes adverse effects, which are 100% additional
congestions, 58% additional bandwidth allocations, and 12.5% additional reconfigurations. The results verify that
ADVM is smart enough to generate and inject adversarial traffic samples adaptively. Compared with those in Fig. 3,
the adverse effects are smaller. This because ADVM needs to adjust itself to adapt to the traffic condition changes.

4. Summary
By leveraging DRL, we proposed the ADVM that can craft and inject adversarial traffic samples adaptively to mislead
the ML-based traffic predictor in an SD-IPoEON. Simulation results demonstrated its effectiveness.
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