Th1F.6.pdf OFC 2020 © OSA 2020

Can You Trust Al-assisted Network Automation? A DRL-based
Approach to Mislead the Automation in SD-IPOEONSs
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Abstract: We study the vulnerability of artificial intelligence agsid network automation (AlaNA),
and design a deep reinforcement learning (DRL) model togaisthe AlaNA in software-defined IP
over elastic optical networks (SD-IPOEONS) through craffinjecting adversarial traffic samples.

1. Introduction

Recently, the rising of software-defined networking (SDN{l artificial intelligence (Al) makes it almost inevitable
to combine these two promising technologies for an unpreed level of network automation [1]. This is especially
true, when the network to be managed is a multilayer one #raies dynamic and irregular traffic from a huge volume
of network services, whose quality-of-service (Qo0S) detisaare variouse.g., a packet over elastic optical network
(IPOEON) [2]. Therefore, people have designed a few madkeaming (ML) based network control and management
(NC&M) schemes [3, 4] to facilitate Al-assisted network @uiation (AlaNA) in software-defined IPOEONs (SD-
IPOEONS). Through data analytics, these schemes can 8ttbesnetwork status in an SD-IPOEON precisely and then
make NC&M decisions accordingly. Hence, network resoucegsbe automatically allocated/adjusted in advance to
improve cost-effectiveness significantly. However, aftelebrating the initial success of AlaNA, we should still be
cautious about implementing it in production networks slikibecause it is still unknown whether or not the reduction
of human involvement achieved by AlaNA could bring unexpédateliability and security issues. More specifically,
whether AlaNA can be fully trusted, to what extent it can hested, and whether it can completely replace a human
operator, are unexplored questions. This inspires us tty $tow to mislead a human-free AlaNA system in this work.
We consider an SD-IPOEON that leverages ML-based traffidigtion to achieve AlaNA. Note that, in addition to
traffic volume, AlaNA can also utilize ML to predict other paneters, such as quality-of-transmission (QoT), resource
usage, and exception occurrence [3]. Nevertheless, itag/rthat such ML-based predictors are vulnerable to well-
crafted adversarial samples [5]. Specifically, a malicipagy can easily mislead an ML-based predictor to output
incorrect predictions by mixing adversarial samples inrifsut time series. Although such adversarial-sampledbase
attacks can be addressed by introducing transfer learnifdlLibased predictors [6], we argue that if the attacker
is smart enough to generate the adversarial samples aelgptive predictors could still be misled to make AlaNA
unreliable. Therefore, we leverage deep reinforcementileg (DRL) to design an adversarial module (ADVM) that
can craft and inject adversarial traffic samples adaptiteetyislead the ML-based traffic predictor in an SD-IPOEON.
We show that the ADVM can monitor and interact with the SDHRN to train its deep neural networks (DNNSs)
on-the-fly, such that adversarial traffic samples can bergésetand injected in the most devastating and hard-teztete
manner. Then, AlaNA in the SD-IPOEON will be misled to make thultilayer service provisioning unreliabies.,
there will be unnecessary congestions/under-utilizatamnlightpaths, and abnormal network reconfigurationstveill
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Fig. 1. System architecture, (a) SD-IPOEON with ADVM, (b)dimn of DRL-based ADVM, and (c) Operation of ADVM.
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invoked frequently to cause extra operational cost and ¢exitp. Our simulations also study the tradeoff between the
strength of perturbation due to adversarial samples aniiipact of the adversarial-sample-based attack on AlaNA.

2. DRL-based Adversarial Traffic Sample Generation and Injestion

Fig. 1(a) shows the architecture of an SD-IPOEON and ADVMsifion in it. The data plane consists of IP and
optical layers. The optical layer is built with a few bandthie/ariable optical cross-connects (BV-OXCs), which
are interconnected by fiber links and can switch lightpatith Wexible-grid spectrum assignments [7]. On each
lightpath, there is dynamic traffic from the IP layer, whichgenerated by the hosts, and is groomed and routed
on the lightpath by the packet switches. Every packet swatzinects to a local BV-OXC through a few bandwidth-
variable transponders (BV-Ts), each of which can geneeaiteinate the optical signal of a lightpath. All the datay@da
elements are managed by the centralized controller. Thismthat the controller can install flow-tables in switches
in the IP layer to groom and route IP flows on lightpaths, aralsb can configure the BV-Ts and BV-OXCs in the
optical layer to establish, reconfigure and remove ligttp&d adapt to dynamic IP traffic. Meanwhile, the controller
monitors traffic condition, leverages ML-based traffic pciidn to detect congestions/under-utilizations on lggths
in advance, and adjusts multilayer service provisioninghie SD-IPOEON accordingly to achieve AlaNA. In this
work, we assume that the ML-based traffic predictor is basethe long/short-term memory based neural network
(LSTM-NN), since it is one of the most-used ML schemes foe@asting time series. Based on traffic prediction and
current network status, the controller calculates futuadtiayer provisioning schemes with the CRV algorithm if.[4

On the other hand, as shown in Fig. 1(a), ADVM also resideséncontrol plane to monitor traffic condition for
generating and injecting adversarial traffic samples agklpt It can launch adversarial-sample-based attackshere
the in-band or out-of-band manner. For the in-band mannBl/M taps and hacks the communications between
the control and data planes, to collect legitimated traffid &ject adversarial samples. For the out-of-band way,
it deploys a few traffic monitors in the SD-IPOEON for passmenitoring, and controls several hijacked hosts to
inject adversarial traffic samples when necessary. We wooldspecify how the attacks are conducted here, since
our ADVM can mislead the AlaNA in the SD-IPOEON in both marmérhe detailed design of ADVM is shown in
Fig. 1(b). It collects historical traffic samples regardome or more lightpaths, and crafts the adversarial samples t
inject accordingly. This is realized by letting the DRL agbased on the advantage actor critic (A2C) interact with
the emulated environment provided by the local traffic prexdi The local traffic predictor in ADVM mimics the
legitimated one that is attached to the controller. Notg tha two predictors do not have to use the same architecture

Fig. 1(c) explains the operation of ADVM. The state obseivgthe DRL agent is a series of the most recent traffic
samples collected from the SD-IPOEON. If we select an insdarthe start time of ADVM's operation, the latest
historical samples (for the traffic before the start timefistdute the initial statsy. Usingsy as the input, the local
predictor forecasts the undisturbed future samplg®aghich should describe the legitimated traffic accuraiedy,
mimicking the legitimated predictor connected to the coltgr. Then, the agent determines its actaynon how to
inject adversarial samples basedsgrwith its actor neural network (A-NN). More specificallygtlhctionay indicates
when and how to disturb the legitimated traffic within a ptdature duration. After the action having been applied,
the observed state gets transferregitdased on which the local predictor obtains a new predigtion

Next, ADVM calculates the reward of the last actiag)(with po, p1, andag. Here, the reward increases with the
average relative error betwe@g and p; for corresponding samples, and it decreases with the fpation strength
caused by ons;. That is to say, the agent is trained to find the way that carnthesemallest perturbation strength
to mislead the legitimated predictor to give the largestmtéon error. The agent gets trained in the online manner,
which means that the aforementioned procedure will be tegdeduring network operation until the duration f
has expired and a nepy is generated to continue. Through the process, the criticah@etwork (C-NN) in the agent
evaluates the actions from the A-NN, and outputs the actate value function €., theQ function) for calculating
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Fig. 2. Training performance of ADVM, (&) value, (b) TD error, and (c) Distribution of relative errors
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the temporal difference (TD) error. The TD error is then tegged by the agent to update the parameters of its A-NN
and C-NN. Meanwhile, it is easy to see that as long as the teafic predictor uses transfer learning, ADVM will be
able to craft adversarial samples in situations where theadieristics of traffic are time-varying.

3. Simulation Setup and Results
Our simulations use the 14-node NSFNET [4] as the opticarl&ypology. In the IP layer, dynamic flow requests are
generated according to the Poisson process, while thenedéd samples of each flow follow realistic traffic tracds [8
Inthe simulations, ADVM can only modify at most 40% of theginial samples, to launch its adversarial-sample-based
attacks, while the actual samples to modify and the changetmaeach adversarial sample are determined by its DRL
agent. Meanwhile, we assume that compared with its origina) each adversarial sample can only increase the traffic
volume. This is because decreasing of traffic volume is retibde in the out-of-band attacks. For a lightpath whose
traffic is described by 160,000 time-varying samples, théopmance of ADVM’s online training is shown in Fig. 2.
Figs. 2(a) and 2(b) suggest that the training converge&iyaéter ~20,000 steps, since the TD error tends to be 0 and
the Q value increases slowly thereafter. Then, if we limit the mmaxm relative error (RE) made by each adversarial
sample as 20%, Fig. 2(c) plots the distribution of the REsoWerve that 99% of the adversarial samples have a RE
below 5%, while the average RE i£286. Hence, the changes made by the adversarial samples b@hétd-to-detect.
Next, we attach ADVM to each established lightpath in the IBDEON, let it launch adversarial-sample-based
attacks with different perturbation strengths, and checdverse effects. Here, we define the strength of pertarisat
made by adversarial samples as the maximum RE caused byfaheinpand change its value from 5% to 20%. Fig. 3
summarizes ADVM's adverse effects on the AlaNA of the SDEPXN, where each data pointis obtained by averaging
the results from 10 independent runs, to ensure sufficiatisstal accuracy. It can be seen that compared with the one
without ADVM, the operation of the SD-IPOEON with it gets tligbed significantly. Specifically, the major metrics on
congestions on lightpaths, bandwidth allocations, and/ot reconfigurations are all increased substantially,iwhe
the attacks present. Also, the increments become larger thleestrength of perturbations increases. Hence, thesesul
in Fig. 3 confirm that ADVM causes extra and unnecessary tipei cost and complexity.
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Fig. 3. Adverse effects of ADVM on (a) Congestions, (b) Bardttvallocations, and (c) Network reconfigurations.

Finally, we check how ADVM performs when the characterstf traffic are time-varying. More specifically, we
make the legitimated traffic samples switch between twodfdtaffic data, whose characteristics are different, and se
the strength of perturbations as 10%. For such setting, ABtNcauses adverse effects, which are 100% additional
congestions, 58% additional bandwidth allocations, an®%?2additional reconfigurations. The results verify that
ADVM is smart enough to generate and inject adversariditramples adaptively. Compared with those in Fig. 3,
the adverse effects are smaller. This because ADVM needijuetatself to adapt to the traffic condition changes.

4. Summary
By leveraging DRL, we proposed the ADVM that can craft anéabpdversarial traffic samples adaptively to mislead
the ML-based traffic predictor in an SD-IPOEON. Simulatiesults demonstrated its effectiveness.
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