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Abstract: A fault localization method for optical networks using knowledge graph and graph neural 
network is proposed. Experimental demonstration shows that the proposed method is effective in 
automating the localizing of optical network faults.   

 
1. Introduction 

As the underlying infrastructure bearing network traffic, the optical network has high requirements for network 
reliability.  A single network fault (e.g., node or link failure) may cause Quality of Service (QoS) degradation or even 
service interruption leading to loss of gigabytes of data. Thus, once network faults occur, network operators need to 
accurately locate the source of fault and then fix it as soon as possible. However, due to the scale of the optical 
networks, identifying the fault location is very difficult. When a single node or link fails, the Network Management 
System (NMS) receives a series of alarms reported by multiple devices. Even if these alarms include location 
information, it is difficult to identify the root alarm in the alarm storm.  

Prior studies have been explored methods to identify fault location. Failure localization method based on the case 
database can accelerate failure location identification by simplifying the process of failure localization [1]. However, 
the proposed method relies on alarm data. The accuracy of fault localization will vary on how comprehensive the 
collected data is. Machine learning (ML) is introduced into optical networks gradually due to the better fitting 
performance [2]. Ref. [3] proposed a deep learning-based method for soft-failure detection. Nevertheless, the model 
is neither systematic nor generalized, meanwhile it is time-consuming to retrain models in different scenarios. 

This work introduces the concept of knowledge graphs (KGs) for optical network alarm relation reasoning. KGs 
help to form an easy-to-understand alarm knowledge system. We also report verification experiments showing the 
alarm relation in the KGs through real network data. A graph neural network (GNN) is trained to find the root alarm. 
The experimental results show that the combination of alarm KGs and GNN can locate faults with promising accuracy. 

2.  Optical Network Fault Localization Method 

2.1. Knowledge Graph for Alarms 

Recently, KGs have been an active research topic in the field of Natural Language Processing (NLP). KGs represent 
knowledge bases (KBs) as a graph whose nodes represent entities, and edges represent relations between entities. A 
triple (entity-relation-entity) can reflect the relationship between events. In optical networks, there is a strong 

 
Fig. 1 (a) A subgraph of the alarm KG; (b) alarm data in optical networks, (c) fault location based on alarm KGs. 
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relationship between alarms and faults i.e., which means that most alarms are generated due to link or node faults. It’s 
helpful for administrators to visually locate faults by introducing KGs into optical networks. The alarm KGs can also 
help machine learning models to perform appropriate alarm relationship learning and reasoning.  

Figure. 1(a) shows a subgraph of the alarm KG which we designed based on commercial equipment alarm 
information manuals. There are three main types of entities (fault entities, root alarm entities, and derived alarm 
entities) and two types of relation edges (reason_of and derive) in the graph. Each alarm entity contains its inherent 
attributes, such as the level and the type of alarm. Such KG can be used to reason the relationship between the alarms 
and faults in optical networks. Thus, when multiple alarm signals are generated in optical networks, the root cause can 
be found through the relationship between entities in the graph. Fig. 1(b) and Fig. 1(c) show the fault localization 
process based on the alarm KG. When the link between NE4 and NE5 is broken, the NMS will receive 4 types of 
alarm (ALM-34, TU_LOP_VC3, R_LOS, and NE_COMMU_BREAK). Through reasoning in the KG, we identify that 
the fault is link broken, and the root alarms are R_LOS and NE_COMMU_BREAK. Thus, the proposed method can 
compress the number of alarms and locate the fault according to the location information of root alarms. 

2.2. Reasoning Model based on Gated Graph Neural Network 

It is simple to reason the above results (in Fig. 1) by human brain. However, it is necessary to reason the root alarms 
and faults automatically using artificial intelligence (AI) in large scales of alarm KGs. Recent research has shown that 
GNN can perform relational reasoning well on KGs [4]. Our reasoning model is based on gated graph neural network 
(GGNN) which is a variant of GNN [5]. GGNN propagates and aggregates node information in graphs by using neural 
networks. 

Figure. 2(a) shows the principle of our reasoning model based on GGNN. The input of the model is the alarm KG 
represented as ={ }V, A , where V  is the entity node set and A  is the adjacency matrix representing the graph 

structure. For each node v V , it has a hidden state t
vh  at timestep t  to represent the node information. When 0t  , 

the hidden state is initialized by the input feature vectors vx . As shown in Fig. 2(a), the hidden state t
vh  of each node 

receives the information '
t
vh  propagated from the neighbor nodes, where 'v  is the neighbor node of v . The matrix A  

determines the connection between the entities, and the parameters of each sub-matrix are represented by the type and 
direction of the edges. The specific propagation model similar to GGNN, is formulated as: 
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where vA  is the two columns of blocks in ( )outA  and ( )inA  corresponding to the node v .  is the logistic sigmoid 

function and   is element-wise multiplication. t
vz and t

vr  are the update gate and the reset gate, respectively. Eq. (6) 

is the output of the final state of the node v , where o  is the output function. 
Figure. 2(b) shows the fault reasoning process. First, the alarm message needs to be clean to remove redundant 

and duplicate data. The alarm message is encoded into a d -dimensional vector to initialize the input feature vx  of the 

entity node v . The input feature vector of the entity node corresponding to the alarm that does not occur is initialized 
by a d -dimensional zero vector 0d . Second, the reasoning model based on GGNN is deployed to propagate node 

message to update the node embedding. After the update of T  time step, the method delivers the final state fo  of the 

fault entity node f F , where F  is the total number of fault entities. At the final step, a simple fully connected 

neural network (FCNN) is deployed as a classifier to identify the fault. After finding the fault cause, the root alarms 
can be selected according to the KG structure and the alarm data. 

3.  Demonstration Experiment Setup and Results 

In order to verify the effectiveness of the fault localization method based on the alarm KG, the alarm data of a single 
fault is used in the experimental demonstration. The alarm data is obtained from the real optical transport network 
(OTN) as shown in Fig. 3(a). The performance data and other attribute information of the alarms are not considered. 
One-hot coding is used as the ‘Encoder’. We consider the training iteration time step T =3. The output function o is 
implemented by a layer of neural network with the activation function as tanh. The dimension of the output feature is 
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set as 10. Cross-entropy loss is used as the objective function and the GGNN is trained with Adam optimizer. The 
experimental results (in Fig. 3(b)) are achieved by an NVIDIA GTX TITAN XP GPU core. 

Figure. 3 shows the results of the experimental demonstration. As shown in Fig. 3(b), 1000 sets of alarm data are 
trained for the proposed model. These alarm data are mainly caused by four types of faults. After 500 iterations, the 
loss value converges and stabilizes at around 0.165. We report the accuracy of fault localization model on the test set 
every 10 iterations. As Fig. 3(b) shows, the accuracy of the model can reach ~99%. Moreover, we are more concerned 
about the impact of the scale of the KG on the fault localization model. Three different small scales of alarm KGs are 
built for testing the performance of the model, where the number of entity nodes is 15, 20, and 25. The result shows 
that as the scale of the alarm KG increases, the time consumption increases slightly. In the meantime, the accuracy is 
significantly high for all three cases.  

4.  Conclusion 
In this work, we first design an alarm KG that can help network administrators to analyze and visualize the relationship 
between alarms. Then, we propose a GGNN based method to reason the relationship between alarms to identify the 
root alarm. The experimental demonstration results show a strong case for the proposed model. Our future work will 
focus on how to automatically extract knowledge from alarm data to complete the alarm KGs. 
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Fig. 2 The pipeline of the fault localization model based on GGNN: (a) the principle of reasoning model, (b) the fault reasoning process. 

 
Fig. 3 Demonstration Experiments: (a) experiment environment (OTN for acquiring the alarm data), (b) the performance of fault localization 

model, (c) the performance of different-scale alarm KG.  


