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Abstract: A soft-failure localization and key working parameters estimation system is 

proposed for network diagnosis and maintenance. We show that a double analysis of 

monitoring data and estimated working parameters greatly anticipates degradations. 
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1. Introduction 

In optical networks, degradation of the Quality of Transmission (QoT) can be the consequence of soft-failures in 

optical devices, like Optical Transponders (TRX), Wavelength Selective Switches (WSS) and Optical 

Amplifiers (OA). Those soft-failures can degenerate into hard-failures and affect a number of optical 

connections supporting a large amount of network services, and therefore it is of paramount importance not only 

to detect them as soon as possible [1], but also to localize the device causing the degradation to facilitate 

maintenance [2]. For such detection and localization to be possible, the control plane of the optical network 

needs to be enriched with Monitoring and Data Analytics (MDA) capabilities [3]. Once monitoring data have 

been collected from the data plane, data analytics algorithms can analyze them either as soon as they are 

available or periodically to proactively detect the degradation and anticipate hard-failures before they actually 

happen, and issue the proper recommendations to the network controller. The controller, in turn can make 

decisions about rerouting and/or reconfiguring the network, as well as to notify the management plane for 

scheduling maintenance. 

Further, a considerable effort has been paying towards disaggregating the optical layer to enrich the offer of 

available solutions and to enable the deployment of optical nodes that better fit optical network operators’ needs. 

However, such disaggregation tends to make network surveillance and maintenance more complex in general. In 

this context, some open-source projects, like GNPy, are considering the specific characteristics of the different 

optical devices that participate in the optical layer, like Reconfigurable Optical Add / Drop Multiplexers 

(ROADM), TRXs, and In-Line OAs, e.g., Erbium Doped Fiber Amplifier (EDFA). The GNPy library is being 

developed within the Telecom InfraProject for physical layer -aware networking [4]. The core of GNPy is the 

QoT estimator calculating the generalized signal to noise ratio (GSNR), considering both the ASE noise and 

Non-Linear Interference (NLI) accumulation, computed by means of the generalized Gaussian-noise model [5]. 

In order to derive the GSNR, a series of parameters is provided as input to the GNPy, together with the network 

topology, which includes the characteristics of the ROADMs, fiber types, span length, and EDFAs gain, power, 

and Noise Figure (NF). GNPy can be used as a tool to estimate the expected QoT for a set of lightpaths for 

several purposes, from off-line to in-operation network planning and re-optimization. 

In this paper, we focus on scenarios of QoT degradation produced by soft-failures in optical devices and 

target not only at localizing the soft-failure, but also at estimating the evolution of the values of its working 

parameters that are causing the observed effects in the QoT. Note that this advanced network performance 

analysis procedure supported by GNPy tool facilitates diagnosis and network maintenance. Furthermore, 

because the relation between the monitored SNR and the value of the working parameters is nor linear, the 

analysis of the evolution of the later in the optical devices can accelerate degradation detection 

2. Real soft-failures analysis 

Several effects degrade the QoT within optical systems. Herewith, we focus on time-dependent degradations, a 

category which is also part of aging effects, which are usually taken into account by means of costly system 

margins. In this work, we considered degradation arising within the following modules: ROADMs and OAs that 

compensate entirely for the fiber losses within the span. A ROADM consists of WSSs and EDFAs, where the 

EDFAs are employed to recover for the filter insertion losses. 

Both building blocks face aging and non-ideal conditions. For example, although EDFAs are considered as 

robust devices, they also suffer aging or time-varying effects, as the increase of the NF over time due to the 

aging of the components. The NF is also frequency-dependent, and as the allocation of the spectrum might be 

time-dependent, the NF can result into a time-frequency variations. The pump lasers of the EDFAs also present 

degradation, which can be adjusted thanks to internal control loops, but which will still reduce the EDFA 
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efficiency. For what concerns the WSSs, they might suffer temperature dependent variations, which might lead 

to frequency drift over time. Furthermore, as individual channels can drift as well, both effects can be highly 

detrimental in terms of QoT. In the context of this work, we consider the following time-varying device 

degradations: a) linear NF increasing over time; b) decrease of the maximum optical output power (P-max) of 

the amplifiers; c) the sudden variation of amplifier gain due optical restoration in the event of fiber cuts; and d) 

OSNR variations caused by frequency drifts of the WSSs due to temperature variations. 

3. Proposed approach for soft-failure localization and device parameters estimation 

Our proposed architecture for soft-failure localization and device parameters estimation is shown in Fig. 1. The 

optical layer consists of a disaggregated set of ROADMs and TRXs, and a set of optical links interconnecting 

ROADMs with a number of OAs. The control plane includes i) a Network Controller to program the network 

devices; ii) a MDA system [3] that collates measurements from the data plane, analyses the data and issues 

recommendations to the network controller; and iii) a QoT tool based on GNPy estimates the SNR of the 

lightpaths and it is used for connection provisioning, as well as for diagnosis and failure localization. 
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Fig. 1. Overview of the proposed surveillance architecture 

The MDA controller collects measurements from 

the optical devices with a given periodicity; in this 

paper, we assumed the MDA collects SNR samples 

from the TRXs every 15 minutes. These 

measurements are compared to the GSNR values 

estimated by the QoT tool for every lightpath to 

check whether there is a meaningful deviation 

(threshold violation); in such case, a procedure 

called MESARTHIM-T is executed with the 

lightpaths exceeding the threshold. MESARTHIM-

T analyzes the behavior of the measured SNR 

evolution to find correlation in the selected 

lightpaths. In addition, a sister algorithm called 

MESARTHIM-P is periodically run considering all 

the lightpaths in the network to identify anomalous 

behavior in the evolution of the estimated 

configuration parameters of the devices. Both focus 

on diagnosing soft-failures in the network. 

The pseudocode of the MESARTHIM-T algorithm is 

presented in Table I, which receives the network graph 

G, the list of lightpaths P, the number T of historical 

monitoring samples, and the connection to the QoT tool 

Q. The algorithm initializes the sets of found clusters C 

that will capture the behavior observed in the lightpaths 

and SC with the common resources supporting those 

lightpaths (line 1 in Table I). Next, the algorithm follows 

a two-step approach. First, it finds clusters of paths with 

a similar behavior (lines 2-5); for such analysis, the last 

T monitoring samples are considered. Note that by 

considering the evolution of paths’ SNR spurious 

measurements in one lightpath can be detected and 

ignored. (line 6). In the case that a set of lightpaths 

presents a similar anomalous behavior, MESARTHIM-T 

proceeds with the second step and finds the common 

resources on which those lightpaths are supported (line 

8); for each common resource a likely evolution of the 

working parameters is found (lines 10-14). To find a 

likely device configuration, the QoT tool is interrogated 

with different values of the parameters and the 

configuration entailing the lowest SNR mean squared 

error for the set of lightpaths is returned. The resources, 

each with a subset of lightpaths and a configuration 

evolution, are eventually returned (line 15). 

The pseudocode of the MESARTHIM-P algorithm is 

shown in Table II; it focuses on analyzing the behavior  
 

Table I. MESARTHIM-T Algorithm Pseudocode 

INPUT: G, P, T, Q OUTPUT: SC 

1: 
2: 

3: 

4: 
5: 

6: 

7: 
8: 

 

9: 
10: 

11: 

12: 
13: 

14: 

15: 

C = {<behavior, {path}>} ← ∅; SC ← ∅ 

for p in P do 

p.snr ← getMonitoringData(p, T) 
p.behavior ← findBehavior(p) 

if p.behavior then addByBehaviorSimilarity(C, p) 

if C == ∅ then return ∅ 
for c in C do 

R = {<resource, {path}>} ← 

FindCommonResources(G, c) 

SC ← SC ∪ R 

for r in R do 

r.evol ← ∅ 

for t in T do 
config ← findLikelyConfig(r, Q) 

r.evol.append(<t, config>) 

return SC 

Table II. MESARTHIM-P Algorithm Pseudocode 

INPUT: G, P, T, Q OUTPUT: SC 

1: 

2: 

 
3: 

4: 

5: 
6: 

7: 

8: 
9: 

10: 

11: 

SC ← ∅ 

R = {<resource, P={path}>} ← 
GroupPathsByResources(G, P) 

for r in R do 

p.snr ← getMonitoringData(r.P, T) 

r.evol ← ∅ 

for t in T do 

config ← findLikelyConfig(r, Q) 

r.evol.append(<t, config>) 
r.behavior ← findBehavior(r) 

if r.behavior then SC ← SC ∪ R 

return SC 
 

of the working parameters evolution of every resource in the network. Note that this analysis could detect soft-

failures that had not yet an impact on the lightpaths, as working parameters and SNR are not linearly related. 
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Fig. 2. Evolution of monitored lighpath SNR with time and estimation of device working parameters. 

4. Results and discussion 

The architecture in Fig. 1 and the proposed procedures for soft-failure localization and device parameters 

estimation has been evaluated through simulation. A German-like network topology with 17 nodes and 52 links 

and 272 lightpaths representing all the origin-destination pairs was implemented, where a monitoring generator 

based on GNPy exported SNR measurements based on the value of working parameters. We selected different 

types of failures affecting an OA and an add/drop (A/D) WSS in a ROADM by forcing the working parameters 

of the selected devices (NF and P-max in the OAs and OSNR in the WSSs) to vary over time. From the different 

variations that might happen, we selected three to illustrate the performance of the proposed algorithms: gradual 

and periodical variations, and short-lived random events. The graphs in the upper row in Fig. 2a-d present the 

evolution of the SNR over time monitored on a lightpath for the selected failures. Note that only the lightpaths 

affected by the failure will get their SNR evolving, whereas the rest of the lightpaths will show no variation over 

the time, other than a random one plus some uncorrelated spurious measurements introduced by the monitoring 

generator. Note that the time in the graphs in Fig. 2 has been normalized, as the time-scales for the considered 

soft-failures are different, ranging from days to years. SNR samples were stored in the simulated control plane 

and fed a module to decide whether the received value is anomalous as compared to the expected SNR for the 

corresponding lightpath, based on a programmable threshold; the threshold was set to a value that exceeds the 

random variations introduced by the monitoring generator. In the case of threshold violation, the 

MESARTHIM-T procedure was run with all the lightpaths exceeding the SNR threshold. In addition, the 

MESARTHIM-P procedure is run periodically with all the lightpaths in the network. 

The evolution of the working parameters are shown in the graphs in the bottom row in Fig. 2a-d, where the 

actually programmed value of the parameter and the interval of values [max, min] estimated by the 

findLikelyConfig() function in the MESARTHIM procedures (lines 11-14 in Table I and lines 5-8 in 

Table II) are plotted. Several conclusions can be drawn from the results in Fig. 2. First, the accuracy of the 

proposed method for estimating the working parameters of the devices is very high for all three variations 

selected. In general, the estimation interval is tighter when the impact of the value of the parameter on the 

observed SNR is higher. In the specific case of the maximum power of the EDFAs, the range of values that 

result in the SNR values observed is large when the observed SNR remains constant around a normal value. 

However, as soon as a degradation is observed, the estimated interval becomes tight. 

Let us now compare the performance of the MESARTHIM procedures. The localization of soft-failures in an 

optical link or in a ROADM requires that several lightpaths are evaluated to find the common resource in the 

network topology. When the evolution of the monitored SNR changes suddenly, MESARTHIM-T collects 

enough lightpaths to easily localize the failure. Nonetheless, under a gradual degradation the lightpaths 

exceeding the threshold might be not enough for the localization. This is not the case for MESARTHIM-P, 

which by analyzing the estimated evolution of the working parameters by resource, it is able to detect 

degradations in their very early stages. The obtained detection times are highlighted with a red dot in Fig. 2a and 

d, where the anticipation achieved by analyzing the evolution of the working parameters is remarkable. 

In conclusion, the combined analysis of the evolution of the monitoring data and their transformation into the 

estimated working parameters, noticeably anticipates degradation detection and facilitates network diagnosis. 
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